26 Chapter 1 45. WHO, World Bank. United Nations Children’s Fund, World Health Organization & World Bank Group. Levels and trends in child malnutrition: Key findings of the 2023 Edition of the Joint Child Malnutrition Estimates [Internet]. Geneva: WHO. 2023 Available from: https://www.who.int/publications/i/item/9789240073791. 46. Briend, A. Collaborating to improve the management of acute malnutrition worldwide Kwashiorkor: still an enigma-the search must go on. www.cmamforum.org (2014). 47. Bhutta, Z. A. et al. Severe childhood malnutrition. Nat Rev Dis Primers 3, (2017). 48. Grenov, B. et al. Diarrhea, Dehydration, and the Associated Mortality in Children with Complicated Severe Acute Malnutrition: A Prospective Cohort Study in Uganda. Journal of Pediatrics 210, 26-33.e3 (2019). 49. Attia, S., Feenstra, M., Swain, N., Cuesta, M. & Bandsma, R. H. J. Starved Guts: Morphologic and Functional Intestinal Changes in Malnutrition. Journal of Pediatric Gastroenterology and Nutrition vol. 65 491–495 Preprint at https://doi.org/10.1097/ MPG.0000000000001629 (2017). 50. Bandsma, R. H. J. et al. Mechanisms Behind Decreased Endogenous Glucose Production in Malnourished Children. Pediatr Res. (2010) doi:10.1203/PDR.0b013e3181f2b959. 51. Wharton, B. Hypoglycaemia in children with Kwashiorkor. The Lancet 124, 617 (1970). 52. Badaloo, A. V, Forrester, T., Reid, M. & Jahoor, F. Lipid kinetic differences between children with kwashiorkor and those with marasmus. Am J Clin Nutr. (2006) doi:10.1093/ ajcn/83.6.1283. 53. Badaloo, A., Reid, M., Soares, D., Forrester, T. & Jahoor, F. Relation between liver fat content and the rate of VLDL apolipoprotein B-100 synthesis in children with proteinenergy malnutrition. Am J Clin Nutri. (2005) doi:10.1093/ajcn/81.5.1126. 54. Doherty, J. F., Golden, M. H. & Brooks, S. E. Peroxisomes and the fatty liver of malnutrition: an hypothesis. Am J Clin Nuir 54, 674–681 (1991). 55. Enwonwu, C. 0, Worthington, B. S. & Jacobson, K. L. Protein-Energy Malnutrition in Infant Non-Human Primates (Macaca Nemestrina) I. Correlation of Biochemical Changes with Fine Structural Alterations in the Liver. Br. J. exp. Path 58, 78 (1977). 56. van Zutphen, T. et al. Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction. J Hepatol 65, 1198–1208 (2016). 57. Arvidsson Kvissberg, M. E. et al. Inhibition of mTOR improves malnutrition induced hepatic metabolic dysfunction. Sci Rep 12, (2022). 58. Hu, G. et al. The role of the tryptophan-NAD + pathway in a mouse model of severe malnutrition induced liver dysfunction. Nat Commun 13, (2022). 59. Mast, F. D., Rachubinski, R. A. & Aitchison, J. D. Signaling dynamics and peroxisomes. Current Opinion in Cell Biology vol. 35 131–136 Preprint at https://doi.org/10.1016/j. ceb.2015.05.002 (2015). 60. Ling, C. et al. Rebalancing of mitochondrial homeostasis through an NAD +-SIRT1 pathway preserves intestinal barrier function in severe malnutrition. EBioMedicine 96, (2023). 61. Glick, D., Barth, S. & Macleod, K. F. Autophagy: Cellular and molecular mechanisms. Journal of Pathology vol. 221 3–12 Preprint at https://doi.org/10.1002/path.2697 (2010). 62. Mizushima, N. SnapShot: Organelle degradation. Molecular Cell vol. 82 1604-1604.e1 Preprint at https://doi.org/10.1016/j.molcel.2022.03.015 (2022).
RkJQdWJsaXNoZXIy MTk4NDMw