José Manuel Horcas Nieto

30 Chapter 1 113. Ergir, E. et al. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci Rep 12, (2022). 114. Williams, L. M. et al. Prolonged culturing of iPSC-derived brain endothelial-like cells is associated with quiescence, downregulation of glycolysis, and resistance to disruption by an Alzheimer’s brain milieu. Fluids Barriers CNS 19, (2022). 115. Chandrasekaran, V. et al. Generation and characterization of iPSC-derived renal proximal tubule-like cells with extended stability. Sci Rep 11, (2021). 116. Mithal, A. et al. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nat Commun 11, (2020). 117. Wu, F. et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J Hepatol 70, 1145–1158 (2019). 118. Hannan, N. R. F., Segeritz, C. P., Touboul, T. & Vallier, L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc 8, 430–437 (2013). 119. Wang, S. et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res 29, 1009–1026 (2019). 120. Baxter, M. et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol 62, 581–589 (2015). 121. Chang, M., Bogacheva, M. S. & Lou, Y. R. Challenges for the Applications of Human Pluripotent Stem Cell-Derived Liver Organoids. Frontiers in Cell and Developmental Biology vol. 9 Preprint at https://doi.org/10.3389/fcell.2021.748576 (2021). 122. Guan, Y. et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight 2, (2017). 123. Apweiler, R. et al. Whither systems medicine? Experimental and Molecular Medicine vol. 50 Preprint at https://doi.org/10.1038/emm.2017.290 (2018). 124. Wolkenhauer, O., Auffray, C., Jaster, R., Steinhoff, G. & Dammann, O. The road from systems biology to systems medicine. Pediatric Research vol. 73 502–507 Preprint at https://doi.org/10.1038/pr.2013.4 (2013). 125. Fell, D. A. Understanding the Control of Metabolism Cell cycle simulation View project Metabolic control analysis. vol. 2 (Portland Press, 1997). 126. Bruggeman, F. J. & Westerhoff, H. V. The nature of systems biology. Trends in Microbiology vol. 15 45–50 Preprint at https://doi.org/10.1016/j.tim.2006.11.003 (2007). 127. Wu, F., Yang, F., Vinnakota, K. C. & Beard, D. A. Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology. Journal of Biological Chemistry 282, 24525–24537 (2007). 128. Lambeth, M. J. & Kushmerick, M. J. A computational model for glycogenolysis in skeletal muscle. Ann Biomed Eng 30, 808–827 (2002). 129. Wang, H. et al. Deep learning in systems medicine. Briefings in Bioinformatics vol. 22 1543–1559 Preprint at https://doi.org/10.1093/bib/bbaa237 (2021).

RkJQdWJsaXNoZXIy MTk4NDMw