José Manuel Horcas Nieto

62 Chapter 2 53. van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14, 1099–1104 (2012). 54. Tetteh, P. W. et al. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters. Cell Stem Cell 18, 203–213 (2016). 55. Jadhav, U. et al. Dynamic Reorganization of Chromatin Accessibility Signatures during Dedifferentiation of Secretory Precursors into Lgr5+ Intestinal Stem Cells. Cell Stem Cell 21, 65-77.e5 (2017). 56. Amadi, B. et al. Impaired Barrier Function and Autoantibody Generation in Malnutrition Enteropathy in Zambia. EBioMedicine 22, 191–199 (2017). 57. Farràs, M. et al. Characterizing the metabolic phenotype of intestinal villus blunting in Zambian children with severe acute malnutrition and persistent diarrhea. PLoS One 13, e0192092 (2018). 58. Boaz, R. T., Joseph, A. J., Kang, G. & Bose, A. Intestinal permeability in normally nourished and malnourished children with and without diarrhea. Indian Pediatr 50, 152–153 (2013). 59. Khaloian, S. et al. Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn’s disease recurrence. Gut 69, 1939–1951 (2020). 60. Hara-Kuge, S. & Fujiki, Y. The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes. Exp Cell Res 314, 3531–3541 (2008). 61. Jiang, L., Hara-Kuge, S., Yamashita, S.-I. & Fujiki, Y. Peroxin Pex14p is the key component for coordinated autophagic degradation of mammalian peroxisomes by direct binding to LC3-II. Genes Cells 20, 36–49 (2015). 62. Peeters, A. et al. Mitochondria in peroxisome-deficient hepatocytes exhibit impaired respiration, depleted DNA, and PGC-1α independent proliferation. Biochim Biophys Acta 1853, 285–298 (2015). 63. Roels, F. et al. Different types of peroxisomes in human duodenal epithelium. Gut 32, 858–865 (1991). 64. Di Cara, F., Bülow, M. H., Simmonds, A. J. & Rachubinski, R. A. Dysfunctional peroxisomes compromise gut structure and host defense by increased cell death and Tor-dependent autophagy. Mol Biol Cell 29, 2766–2783 (2018). 65. Yan, F. et al. Peroxisome proliferator-activated receptor α activation induces hepatic steatosis, suggesting an adverse effect. PLoS One 9, (2014). 66. Kiskac, M. et al. A case of rhabdomyolysis complicated with acute renal failure after resumption of fenofibrate therapy: a first report. Indian J Pharmacol 45, 305–306 (2013). 67. Rigano, D., Sirignano, C. & Taglialatela-Scafati, O. The potential of natural products for targeting PPARα. Acta Pharm Sin B 7, 427–438 (2017). 68. Keller, H. et al. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A 90, 2160–2164 (1993). 69. Bartolomé, A. et al. MTORC1 Regulates both General Autophagy and Mitophagy Induction after Oxidative Phosphorylation Uncoupling. Mol Cell Biol 37, (2017).

RkJQdWJsaXNoZXIy MTk4NDMw