86 Chapter 3 REFERENCES 1. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009). 2. Huch, M. et al. In vitro expansion of single Lgr5 + liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013). 3. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013). 4. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015). 5. Jin, L. et al. In vitro multilineage differentiation and self-renewal of single pancreatic colony-forming cells from adult C57Bl/6 mice. Stem Cells Dev 23, 899–909 (2014). 6. Barker, N. et al. Lgr5+ve Stem Cells Drive Self-Renewal in the Stomach and Build LongLived Gastric Units In Vitro. Cell Stem Cell 6, 25–36 (2010). 7. Lancaster, M. A. & Knoblich, J. A. Organogenesisin a dish: Modeling development and disease using organoid technologies. Science (1979) 345, (2014). 8. Schutgens, F. & Clevers, H. Human Organoids: Tools for Understanding Biology and Treating Diseases. (2019) doi:10.1146/annurev-pathmechdis. 9. Boonekamp, K. E. et al. Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc Natl Acad Sci U S A 116, 14630–14638 (2019). 10. Levin, G. et al. R-Spondin 1 (RSPO1) Increases Mouse Intestinal Organoid Unit Size and Survival in vitro and Improves Tissue-Engineered Small Intestine Formation in vivo. Front Bioeng Biotechnol 8, (2020). 11. Wrenn, E. D., Moore, B. M., Greenwood, E., McBirney, M. & Cheung, K. J. Optimal, Large-Scale Propagation of Mouse Mammary Tumor Organoids. J Mammary Gland Biol Neoplasia 25, 337–350 (2020). 12. DiStefano, T. et al. Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors. Stem Cell Reports 10, 300– 313 (2018). 13. Kassis, T., Hernandez-Gordillo, V., Langer, R. & Griffith, L. G. OrgaQuant: Human Intestinal Organoid Localization and Quantification Using Deep Convolutional Neural Networks. Sci Rep 9, (2019). 14. Bian, X. et al. A deep learning model for detection and tracking in high-throughput images of organoid. Comput Biol Med 134, (2021). 15. Haja, A. & Schomaker, L. R. B. A Fully Automated End-to-End Process for Fluorescence Microscopy Images of Yeast Cells: From Segmentation to Detection and Classification. in Lecture Notes in Electrical Engineering vol. 784 LNEE 37–46 (Springer Science and Business Media Deutschland GmbH, 2022). 16. Broutier, L. et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat Protoc 11, 1724– 1743 (2016). 17. He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. (2017).
RkJQdWJsaXNoZXIy MTk4NDMw