Sara Russo

127 4 Proteomic signature of macrophages cultured on collagen type 1 REFERENCES 1. Knuppel, L. et al. A Novel Antifibrotic Mechanism of Nintedanib and Pirfenidone. Inhibition of Collagen Fibril Assembly. Am J Respir Cell Mol Biol 57, 77-90, doi:10.1165/rcmb.2016-0217OC (2017). 2. Kristensen, J. H. et al. The role of extracellular matrix quality in pulmonary fibrosis. Respiration 88, 487-499, doi:10.1159/000368163 (2014). 3. Tjin, G. et al. Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis. Dis Model Mech 10, 1301-1312, doi:10.1242/dmm.030114 (2017). 4. Wells, R. G. Tissue mechanics and fibrosis. Biochim Biophys Acta 1832, 884-890, doi:10.1016/j. bbadis.2013.02.007 (2013). 5. Booth, A. J. et al. Acellular Normal and Fibrotic Human Lung Matrices as a Culture System for In Vitro Investigation. American Journal of Respiratory and Critical Care Medicine 186, 866876, doi:10.1164/rccm.201204-0754OC (2012). 6. Upagupta, C., Shimbori, C., Alsilmi, R. & Kolb, M. Matrix abnormalities in pulmonary fibrosis. Eur Respir Rev 27, doi:10.1183/16000617.0033-2018 (2018). 7. Manou, D. et al. The Complex Interplay Between Extracellular Matrix and Cells in Tissues. Methods Mol Biol 1952, 1-20, doi:10.1007/978-1-4939-9133-4_1 (2019). 8. Wynn, T. A. & Vannella, K. M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 44, 450-462, doi:10.1016/j.immuni.2016.02.015 (2016). 9. Zhang, L. et al. Macrophages: friend or foe in idiopathic pulmonary fibrosis? Respir Res 19, 170, doi:10.1186/s12931-018-0864-2 (2018). 10. Vasse, G. F. et al. Macrophage-stroma interactions in fibrosis: biochemical, biophysical, and cellular perspectives. J Pathol 254, 344-357, doi:10.1002/path.5632 (2021). 11. Vasse, G. F. et al. Collagen morphology influences macrophage shape and marker expression in vitro. Journal of Immunology and Regenerative Medicine 1, 13-20, doi:https://doi. org/10.1016/j.regen.2018.01.002 (2018). 12. Fejer, G. et al. Nontransformed, GM-CSF-dependent macrophage lines are a unique model to study tissue macrophage functions. Proc Natl Acad Sci U S A 110, E2191-2198, doi:10.1073/ pnas.1302877110 (2013). 13. O'Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat Rev Immunol 16, 553-565, doi:10.1038/nri.2016.70 (2016). 14. Woods, P. S. et al. Tissue-Resident Alveolar Macrophages Do Not Rely on Glycolysis for LPSinduced Inflammation. Am J Respir Cell Mol Biol 62, 243-255, doi:10.1165/rcmb.2019-0244OC (2020). 15. Xie, N. et al. Metabolic characterization and RNA profiling reveal glycolytic dependence of profibrotic phenotype of alveolar macrophages in lung fibrosis. Am J Physiol Lung Cell Mol Physiol 313, L834-L844, doi:10.1152/ajplung.00235.2017 (2017). 16. Drummond, D. A. & Wilke, C. O. The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 10, 715-724, doi:10.1038/nrg2662 (2009). 17. Kemp, R. G. & Gunasekera, D. Evolution of the allosteric ligand sites of mammalian phosphofructo-1-kinase. Biochemistry 41, 9426-9430, doi:10.1021/bi020110d (2002).

RkJQdWJsaXNoZXIy MTk4NDMw