Sara Russo

128 Chapter 4 18. Russo, S., Kwiatkowski, M., Govorukhina, N., Bischoff, R. & Melgert, B. N. Meta-Inflammation and Metabolic Reprogramming of Macrophages in Diabetes and Obesity: The Importance of Metabolites. Front Immunol 12, 746151, doi:10.3389/fimmu.2021.746151 (2021). 19. Batista-Gonzalez, A., Vidal, R., Criollo, A. & Carreno, L. J. New Insights on the Role of Lipid Metabolism in the Metabolic Reprogramming of Macrophages. Front Immunol 10, 2993, doi:10.3389/fimmu.2019.02993 (2019). 20. Cauble, M. et al. Microstructure dependent binding of pigment epithelium derived factor (PEDF) to type I collagen fibrils. J Struct Biol 199, 132-139, doi:10.1016/j.jsb.2017.06.001 (2017). 21. Martinez-Marin, D. et al. PEDF increases the tumoricidal activity of macrophages towards prostate cancer cells in vitro. PLoS One 12, e0174968, doi:10.1371/journal.pone.0174968 (2017). 22. Cosgrove, G. P. et al. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med 170, 242-251, doi:10.1164/rccm.2003081151OC (2004). 23. Qin, X. et al. PEDF is an antifibrosis factor that inhibits the activation of fibroblasts in a bleomycin-induced pulmonary fibrosis rat model. Respir Res 23, 100, doi:10.1186/s12931-02202027-4 (2022). 24. Moradi-Chaleshtori, M. et al. Overexpression of pigment epithelium-derived factor in breast cancer cell-derived exosomes induces M1 polarization in macrophages. Immunol Lett 248, 31-36, doi:10.1016/j.imlet.2022.05.005 (2022). 25. Zhang, Y. et al. Secreted PEDF modulates fibroblast collagen synthesis through M1 macrophage polarization under expanded condition. Biomed Pharmacother 142, 111951, doi:10.1016/j. biopha.2021.111951 (2021). 26. Carleo, A. et al. Proteomic characterization of idiopathic pulmonary fibrosis patients: stable versus acute exacerbation. Monaldi Arch Chest Dis 90, doi:10.4081/monaldi.2020.1231 (2020). 27. Kim, H. W. et al. Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds. Inflammation 35, 167-175, doi:10.1007/s10753-011-9302-z (2012). 28. Shanbhag, V. et al. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc Natl Acad Sci U S A 116, 6836-6841, doi:10.1073/ pnas.1817473116 (2019). 29. Aumiller, V. et al. Comparative analysis of lysyl oxidase (like) family members in pulmonary fibrosis. Sci Rep 7, 149, doi:10.1038/s41598-017-00270-0 (2017). 30. Chen, L., Li, S. & Li, W. LOX/LOXL in pulmonary fibrosis: potential therapeutic targets. J Drug Target 27, 790-796, doi:10.1080/1061186X.2018.1550649 (2019). 31. Dong, X. et al. Inhibitory effects of thalidomide on bleomycin-induced pulmonary fibrosis in rats via regulation of thioredoxin reductase and inflammations. Am J Transl Res 9, 4390-4401 (2017). 32. Hoshino, T. et al. Redox-active protein thioredoxin prevents proinflammatory cytokine- or bleomycin-induced lung injury. Am J Respir Crit Care Med 168, 1075-1083, doi:10.1164/ rccm.200209-982OC (2003). 33. El Hadri, K. et al. Thioredoxin-1 promotes anti-inflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 32, 14451452, doi:10.1161/ATVBAHA.112.249334 (2012). 34. Clynick, B. et al. Circulating RNA differences between patients with stable and progressive idiopathic pulmonary fibrosis. Eur Respir J 56, doi:10.1183/13993003.02058-2019 (2020).

RkJQdWJsaXNoZXIy MTk4NDMw