Sara Russo

18 Chapter 1 33. Gautiar EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, et al. Gene expression profiles and transcriptional regulatory pathways underlying mouse tissue macrophage identity and diversity. Nat Immunol (2012) 13:1118. doi: 10.1038/ NI.2419 34. Westphalen K, Gusarova GA, Islam MN, Subramanian M, Cohen TS, Prince AS, Bhattacharya J. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature (2014) 506:503–506. doi: 10.1038/nature12902 35. Hume PS, Gibbings SL, Jakubzick C V., Tuder RM, Curran-Everett D, Henson PM, Smith BJ, Janssen WJ. Localization of Macrophages in the Human Lung via Design-based Stereology. Am J Respir Crit Care Med (2020) 201:1209–1217. doi: 10.1164/rccm.201911-2105OC 36. Mould KJ, Moore CM, McManus SA, McCubbrey AL, McClendon JD, Griesmer CL, Henson PM, Janssen WJ. Airspace Macrophages and Monocytes Exist in Transcriptionally Distinct Subsets in Healthy Adults. Am J Respir Crit Care Med (2021) 203:946–956. doi: 10.1164/rccm.2020051989OC 37. Li X, Kolling FW, Aridgides D, Mellinger D, Ashare A, Jakubzick C V. ScRNA-seq expression of IFI27 and APOC2 identifies four alveolar macrophage superclusters in healthy BALF. Life Sci Alliance (2022) 5:e202201458. doi: 10.26508/lsa.202201458 38. Modolell M, Corraliza IM, Link F, Soler G, Eichmann K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow‐derived macrophages by TH 1 and TH 2 cytokines. Eur J Immunol (1995) 25:1101–1104. doi: 10.1002/eji.1830250436 39. Huang SC-C, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, Beatty W, LoveGregory L, Lam WY, O’Neill CM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nature Immunology 2014 15:9 (2014) 15:846–855. doi: 10.1038/ ni.2956 40. Newsholme P, Curi R, Gordon S, Newsholme EA. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochemical Journal (1986) 239:121–125. doi: 10.1042/bj2390121 41. Ryan DG, O’neill LAJ. Krebs Cycle Reborn in Macrophage Immunometabolism. Annual Review of Immunology (2020) 38:289–313. doi: 10.1146/annurev-immunol-081619 42. Infantino V, Convertini P, Cucci L, Panaro MA, di Noia MA, Calvello R, Palmieri F, Iacobazzi V. The mitochondrial citrate carrier: A new player in inflammation. Biochemical Journal (2011) 438:433–436. doi: 10.1042/BJ20111275 43. Lauterbach MA, Hanke JE, Serefidou M, Mangan MSJ, Kolbe C-C, Hess T, Rothe M, Kaiser R, Hoss F, Gehlen J, et al. Toll-like Receptor Signaling Rewires Macrophage Metabolism and Promotes Histone Acetylation via ATP-Citrate Lyase. Immunity (2019) 51:997-1011.e7. doi: 10.1016/J.IMMUNI.2019.11.009 44. Tannahill GM, Curtis AM, Adamik J, Palsson-Mcdermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature (2013) 496:238–242. doi: 10.1038/nature11986 45. O’Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol (2016) 16:553–565. doi: 10.1038/nri.2016.70 46. Kelly B, O’Neill LAJ. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res (2015) 25:771–784. doi: 10.1038/cr.2015.68

RkJQdWJsaXNoZXIy MTk4NDMw