Sara Russo

19 1 General Introduction 47. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab (2006) 3:187–197. doi: 10.1016/j.cmet.2006.01.012 48. Caslin HL, Bhanot M, Bolus WR, Hasty AH. Adipose tissue macrophages: Unique polarization and bioenergetics in obesity. Immunol Rev (2020) 295:101–113. doi: 10.1111/imr.12853 49. Nicola NA, Burgess AW, Staber FG, Johnson GR, Metcalf D, Battye FL. Differential expression of lectin receptors during hemopoietic differntiation: Enrichment for granulocyte‐macrophage progenitor cells. J Cell Physiol (1980) 103:217–237. doi: 10.1002/jcp.1041030207 50. Ahl PJ, Hopkins RA, Xiang WW, Au B, Kaliaperumal N, Fairhurst AM, Connolly JE. Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Commun Biol (2020) 3:1–15. doi: 10.1038/s42003-020-1027-9 51. van den Bossche J, Baardman J, de Winther MPJ. Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis. Journal of Visualized Experiments (2015) 2015:53424. doi: 10.3791/53424 52. Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, Wishart D. Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites (2019) 9:76. doi: 10.3390/metabo9040076 53. Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol (2012) 13:263–269. doi: 10.1038/nrm3314 54. Kuehnbaum NL, Britz-Mckibbin P. New advances in separation science for metabolomics: Resolving chemical diversity in a post-genomic era. Chem Rev (2013) 113:2437–2468. doi: 10.1021/cr300484s 55. Yuan J, Bennett BD, Rabinowitz JD. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc (2008) 3:1328–1340. doi: 10.1038/nprot.2008.131 56. Puchalska P, Huang X, Martin SE, Han X, Patti GJ, Crawford PA. Isotope Tracing Untargeted Metabolomics Reveals Macrophage Polarization-State-Specific Metabolic Coordination across Intracellular Compartments. iScience (2018) 9:298–313. doi: 10.1016/j.isci.2018.10.029 57. Mathis D, Shoelson SE. Immunometabolism: an emerging frontier. Nature Reviews Immunology (2011) 11:81–83. doi: 10.1038/nri2922 58. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol (2014) 15:536–550. doi: 10.1038/nrm3841 59. Kim G-W, Gocevski G, Wu C-J, Yang X-J. Dietary, Metabolic, and Potentially Environmental Modulation of the Lysine Acetylation Machinery. Int J Cell Biol (2010) 2010:1–14. doi: 10.1155/2010/632739 60. Henry RA, Kuo Y-M, Bhattacharjee V, Yen TJ, Andrews AJ. Changing the Selectivity of p300 by Acetyl-CoA Modulation of Histone Acetylation. ACS Chem Biol (2015) 10:146–156. doi: 10.1021/ cb500726b 61. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, et al. Regulation of cellular metabolism by protein lysine acetylation. Science (1979) (2010) 327:1000–1004. doi: 10.1126/science.1179689 62. Strahl BD, Allis CD. The language of covalent histone modifications. Nature (2000) 403:41–45. doi: 10.1038/47412

RkJQdWJsaXNoZXIy MTk4NDMw