Sara Russo

20 Chapter 1 63. RUIJTER AJM de, GENNIP AH van, CARON HN, KEMP S, KUILENBURG ABP van. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochemical Journal (2003) 370:737–749. doi: 10.1042/bj20021321 64. Yang X-J, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol (2008) 9:206–218. doi: 10.1038/nrm2346 65. Morris MJ, Monteggia LM. Unique functional roles for class I and class II histone deacetylases in central nervous system development and function. International Journal of Developmental Neuroscience (2013) 31:370–381. doi: 10.1016/j.ijdevneu.2013.02.005 66. Vaquero A, Sternglanz R, Reinberg D. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene (2007) 26:5505–5520. doi: 10.1038/sj.onc.1210617 67. Glozak MA, Seto E. Acetylation/Deacetylation Modulates the Stability of DNA Replication Licensing Factor Cdt1. Journal of Biological Chemistry (2009) 284:11446–11453. doi: 10.1074/ jbc.M809394200 68. Villagra A, Cheng F, Wang H-W, Suarez I, Glozak M, Maurin M, Nguyen D, Wright KL, Atadja PW, Bhalla K, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol (2009) 10:92–100. doi: 10.1038/ni.1673 69. Khan O, La Thangue NB. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol (2012) 90:85–94. doi: 10.1038/icb.2011.100 70. Valdez BC, Brammer JE, Li Y, Murray D, Liu Y, Hosing C, Nieto Y, Champlin RE, Andersson BS. Romidepsin targets multiple survival signaling pathways in malignant T cells. Blood Cancer J (2015) 5:e357–e357. doi: 10.1038/bcj.2015.83 71. Porcu M, Chiarugi A. The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol Sci (2005) 26:94–103. doi: 10.1016/j. tips.2004.12.009

RkJQdWJsaXNoZXIy MTk4NDMw