54 Chapter 2 77. Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. Biochim Biophys Acta Proteins Proteom (2016) 1864:1372–1401. doi: 10.1016/j.bbapap.2016.06.007 78. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol (2014) 15:536–550. doi: 10.1038/nrm3841 79. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui T v., Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science (1979) (2009) 324:1076–1080. doi: 10.1126/science.1164097 80. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, et al. Regulation of cellular metabolism by protein lysine acetylation. Science (1979) (2010) 327:1000–1004. doi: 10.1126/science.1179689 81. de Ruijter AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg A! BP. Histone deacetylases (HDACs) : characterization of the classical HDAC family. (2003). 737–749 p. 82. Raghuraman S, Donkin I, Versteyhe S, Barrès R, Simar D. The Emerging Role of Epigenetics in Inflammation and Immunometabolism. Trends in Endocrinology and Metabolism (2016) 27:782–795. doi: 10.1016/j.tem.2016.06.008 83. Akbari M, Hassan-Zadeh V. The inflammatory effect of epigenetic factors and modifications in type 2 diabetes. Inflammopharmacology (2019) doi: 10.1007/s10787-019-00663-9 84. Bricambert J, Favre D, Brajkovic S, Bonnefond A, Boutry R, Salvi R, Plaisance V, Chikri M, Chinetti-Gbaguidi G, Staels B, et al. Impaired histone deacetylases 5 and 6 expression mimics the effects of obesity and hypoxia on adipocyte function. Mol Metab (2016) 5:1200–1207. doi: 10.1016/j.molmet.2016.09.011 85. Zhou S, Tang X, Chen H-Z. Sirtuins and Insulin Resistance. Frontiers in Endocrinology | www. frontiersin.org (2018) 9:748. doi: 10.3389/fendo.2018.00748 86. Vana Dyke MW. Lysine deacetylase (KDAC) regulatory pathways: An alternative approach to selective modulation. ChemMedChem (2014) 9:511–522. doi: 10.1002/cmdc.201300444 87. Wang C-H, Wei Y-H. Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and Type 2 Diabetes. Int J Mol Sci (2020) 21:5266. doi: 10.3390/ ijms21155266 88. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature (2005) 434:113–118. doi: 10.1038/ nature03354 89. Cao Y, Jiang X, Ma H, Wang Y, Xue P, Liu Y. SIRT1 and insulin resistance. J Diabetes Complications (2016) 30:178–183. doi: 10.1016/j.jdiacomp.2015.08.022 90. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J (2004) 23:2369–2380. doi: 10.1038/sj.emboj.7600244 91. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther (2017) 2:1–9. doi: 10.1038/sigtrans.2017.23 92. Martínez-Jiménez V, Cortez-Espinosa N, Rodríguez-Varela E, Vega-Cárdenas M, BrionesEspinoza M, Ruíz-Rodríguez VM, López-López N, Briseño-Medina A, Turiján-Espinoza E, Portales-Pérez DP. Altered levels of sirtuin genes (SIRT1, SIRT2, SIRT3 and SIRT6) and their target genes in adipose tissue from individual with obesity. Diabetes and Metabolic Syndrome: Clinical Research and Reviews (2019) 13:582–589. doi: 10.1016/j.dsx.2018.11.011
RkJQdWJsaXNoZXIy MTk4NDMw