Sara Russo

57 2 Macrophage Metabolic Reprogramming in Diabetes 124. Eshghjoo S, Kim DM, Jayaraman A, Sun Y, Alaniz RC. A Comprehensive High-Efficiency Protocol for Isolation, Culture, Polarization, and Glycolytic Characterization of Bone Marrow-Derived Macrophages. J Vis Exp (2021) 2021:1–16. doi: 10.3791/61959 125. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, van den Bosch MWM, Quinn SR, Domingo-Fernandez R, Johnston DGW, et al. Pyruvate Kinase M2 Regulates Hif-1α Activity and IL-1β Induction and Is a Critical Determinant of the Warburg Effect in LPS-Activated Macrophages. Cell Metab (2015) 21:65–80. doi: 10.1016/J. CMET.2014.12.005 126. Na YR, Jung D, Song J, Park J-W, Hong JJ, Seok SH. Pyruvate dehydrogenase kinase is a negative regulator of interleukin-10 production in macrophages. J Mol Cell Biol (2020) 12:543–555. doi: 10.1093/JMCB/MJZ113 127. Bailey JD, Diotallevi M, Nicol T, McNeill E, Shaw A, Chuaiphichai S, Hale A, Starr A, Nandi M, Stylianou E, et al. Nitric Oxide Modulates Metabolic Remodeling in Inflammatory Macrophages through TCA Cycle Regulation and Itaconate Accumulation. Cell Rep (2019) 28:218-230.e7. doi: 10.1016/J.CELREP.2019.06.018 128. A A, C M, AM G, DH K. Metabolic characterisation of THP-1 macrophage polarisation using LCMS-based metabolite profiling. Metabolomics (2020) 16: doi: 10.1007/S11306-020-01656-4 129. Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, Miyazawa H, Yamaguchi Y, Miura M, Jenkins DMR, et al. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun (2016) 7: doi: 10.1038/NCOMMS11635 130. Triboulet S, Aude-Garcia C, Armand L, Gerdil A, Diemer H, Proamer F, Collin-Faure V, Habert A, Strub J-M, Hanau D, et al. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach. Nanoscale (2014) 6:6102– 6114. doi: 10.1039/C4NR00319E 131. D Z, Z T, H H, G Z, C C, Y W, W L, S K, S L, M P-N, et al. Metabolic regulation of gene expression by histone lactylation. Nature (2019) 574:575–580. doi: 10.1038/S41586-019-1678-1 132. Meiser J, Krämer L, Sapcariu SC, Battello N, Ghelfi J, D’Herouel AF, Skupin A, Hiller K. Proinflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression. Journal of Biological Chemistry (2016) 291:3932–3946. doi: 10.1074/JBC.M115.676817 133. Cordes T, Metallo CM. Itaconate Alters Succinate and Coenzyme A Metabolism via Inhibition of Mitochondrial Complex II and Methylmalonyl-CoA Mutase. Metabolites 2021, Vol 11, Page 117 (2021) 11:117. doi: 10.3390/METABO11020117 134. Ko CW, Counihan D, Wu J, Hatzoglou M, Puchowicz MA, Croniger CM. Macrophages with a deletion of the phosphoenolpyruvate carboxykinase 1 (Pck1) gene have a more proinflammatory phenotype. Journal of Biological Chemistry (2018) 293:3399–3409. doi: 10.1074/JBC. M117.819136/ATTACHMENT/2E807966-9995-4072-B691-0317F2F6EDA5/MMC1.PDF

RkJQdWJsaXNoZXIy MTk4NDMw