71 Predicting population-level vulnerability among pregnant women 20. Miilunpalo S, Vuori I, Oja P, Pasanen M, Urponen H. Self-rated health status as a health measure: the predictive value of self-reported health status on the use of physician services and on mortality in the working-age population. J Clin Epidemiol. 1997;50(5):517-28. 21. Au N, Johnston DW. Self-assessed health: what does it mean and what does it hide? Soc Sci Med. 2014;121:21-8. 22. Paul P, Nguemdjo U, Kovtun N, Ventelou B. Does self-assessed health reflect the true health state? Int J Environ Res Public Health. 2021;18(21):11153. 23. Perined. Over Perined [about Perined] n.d. [10/17/2023]. Available from: https://www.perined.nl/over-perined 24. Bakker BF, Van Rooijen J, Van Toor L. The system of social statistical datasets of Statistics Netherlands: An integral approach to the production of register-based social statistics. Statistical Journal of the IAOS. 2014;30(4):411-24. 25. Statistics Netherlands (CBS). About CBS n.d. [Date cited: 10/17/2023]. Available from: https:// www.cbs.nl/en-gb/about-us/ 26. Community Health Services Statistics Netherlands and the National Institute for Public Health and the Environment. Public Health Monitor 2012, 2016 and 2020. Available from: https://www.monitorgezondheid.nl/gezondheidsmonitor-volwassenen-en-ouderen 27. Van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. Journal of statistical software. 2011;45:1-67. 28. Breiman L. Random forests. Machine learning. 2001;45:5-32. 29. Davis J, Goadrich M, editors. The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning; 2006. 30. Wright MN, Wager S, Probst P. Package ‘ranger’ 2023. Available from: https://mirror.las. iastate.edu/CRAN/web/packages/ranger/ranger.pdf 31. Parvandeh S, Yeh H-W, Paulus MP, McKinney BA. Consensus features nested cross-validation. Bioinformatics. 2020;36(10):3093-8. 32. Janitza S, Celik E, Boulesteix A-L. A computationally fast variable importance test for random forests for high-dimensional data. Advances in Data Analysis and Classification. 2018;12:885-915. 33. van Blarikom E, de Kok B, Bijma HH. “Who am I to say?” Dutch care providers’ evaluation of psychosocial vulnerability in pregnant women. Soc Sci Med. 2022;307:115181. 34. Luna F. Identifying and evaluating layers of vulnerability–a way forward. Dev World Bioeth. 2019;19(2):86-95. 35. Tully KP, Gibson AN, Pearsall MS, Umstead K, Gill C, Stuebe AM. Screening and referral for social determinants of health: Maternity patient and health care team perspectives. Health Equity. 2022;6(1):887-97. 36. Vezzoli M, Valtorta RR, Mari S, Durante F, Volpato C. Effects of objective and subjective indicators of economic inequality on subjective well‐being: Underlying mechanisms. J Appl Soc Psychol. 2023;53(2):85-100. 37. Tan JJ, Kraus MW, Carpenter NC, Adler NE. The association between objective and subjective socioeconomic status and subjective well-being: A meta-analytic review. Psychol Bull. 2020;146(11):970. 38. Navarro-Carrillo G, Alonso-Ferres M, Moya M, Valor-Segura I. Socioeconomic status and psychological well-being: Revisiting the role of subjective socioeconomic status. Front Psychol. 2020;11:1303. 39. Cundiff JM, Matthews KA. Is subjective social status a unique correlate of physical health? A meta-analysis. Health Psychol. 2017;36(12):1109. 40. Haushofer J, Fehr E. On the psychology of poverty. Science. 2014;344(6186):862-7. 41. Cundiff JM, Boylan JM, Muscatell KA. The pathway from social status to physical health: Taking a closer look at stress as a mediator. Curr Dir Psychol Sci. 2020;29(2):147-53. 3
RkJQdWJsaXNoZXIy MTk4NDMw