Katarina Ochodnicka

4 DNA damage response regulates RAG1/2 expression through ATM-FOXO1 | 109 48. Schlissel, M., A. Constantinescu, T. Morrow, M. Baxter, and A. Peng. 1993. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5’-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev. 7: 2520–2532. 49. Hu, H., B. Wang, M. Borde, J. Nardone, S. Maika, L. Allred, P. W. Tucker, and A. Rao. 2006. Foxp1 is an essential transcriptional regulator of B cell development. Nat Immunol 7: 819–826. 50. Steinel, N. C., M. R. Fisher, K. S. Yang-Iott, and C. H. Bassing. 2014. The ataxia telangiectasia mutated and cyclin D3 proteins cooperate to help enforce TCRβ and IgH allelic exclusion. J. Immunol. 193: 2881–2890. 51. Verkoczy, L., B. Duong, P. Skog, D. Aït-Azzouzene, K. Puri, J. L. Vela, and D. Nemazee. 2007. Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. J. Immunol. 178: 6332–6341. 52. Eijkelenboom, A., and B. M. T. Burgering. 2013. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14: 83–97. 53. Chow, K. T., G. A. Timblin, S. M. McWhirter, and M. S. Schlissel. 2013. MK5 activates Rag transcription via Foxo1 in developing B cells. J. Exp. Med. 210: 1621–1634. 54. Lee, B., J. D. Dekker, B. Lee, V. R. Iyer, B. P. Sleckman, A. L. Shaffer, G. C. Ippolito, and P. W. Tucker. 2013. The BCL11A transcription factor directly activates RAG gene expression and V(D)J recombination. Mol. Cell. Biol. 33: 1768–1781. 55. Matsuzaki, H., H. Daitoku, M. Hatta, H. Aoyama, K. Yoshimochi, and A. Fukamizu. 2005. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 102: 11278–11283. 56. Daitoku, H., M. Hatta, H. Matsuzaki, S. Aratani, T. Ohshima, M. Miyagishi, T. Nakajima, and A. Fukamizu. 2004. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl. Acad. Sci. U. S. A. 101: 10042–10047. 57. Motta, M. C., N. Divecha, M. Lemieux, C. Kamel, D. Chen, W. Gu, Y. Bultsma, M. McBurney, and L. Guarente. 2004. Mammalian SIRT1 represses forkhead transcription factors. Cell 116: 551–563. 58. Yuan, J., K. Luo, T. Liu, and Z. Lou. 2012. Regulation of SIRT1 activity by genotoxic stress. Genes Dev. 26: 791–796. 59. Zannini, L., G. Buscemi, J.-E. Kim, E. Fontanella, and D. Delia. 2012. DBC1 phosphorylation by ATM/ATR inhibits SIRT1 deacetylase in response to DNA damage. J. Mol. Cell Biol. 4: 294–303. 60. Rodgers, W., J. N. Byrum, H. Sapkota, N. S. Rahman, R. C. Cail, S. Zhao, D. G. Schatz, and K. K. Rodgers. 2015. Spatio-temporal regulation of RAG2 following genotoxic stress. DNA Repair (Amst). 27: 19–27. 61. Williams, C. J., I. Grandal, D. J. Vesprini, U. Wojtyra, J. S. Danska, and C. J. Guidos. 2001. Irradiation promotes V(D)J joining and RAG-dependent neoplastic transformation in SCID T-cell precursors. Mol. Cell. Biol. 21: 400–413. 62. Bredemeyer, A. L., G. G. Sharma, C. Y. Huang, B. A. Helmink, L. M. Walker, K. C. Khor, B. Nuskey, K. E. Sullivan, T. K. Pandita, C. H. Bassing, and B. P. Sleckman. 2006. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442: 466–470. 63. Callen, E., M. Jankovic, S. Difilippantonio, J. A. Daniel, H. T. Chen, A. Celeste, M. Pellegrini, K. McBride, D. Wangsa, A. L. Bredemeyer, B. P. Sleckman, T. Ried, M. Nussenzweig, and A. Nussenzweig. 2007. ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell 130: 63–75.

RkJQdWJsaXNoZXIy MTk4NDMw