148 | Chapter 6 Abstract During the maturation of pre-B cells, the recombination activating gene 1 and 2 (RAG1/2) endonuclease complex plays a crucial role in coordinating V(D)J recombination by introducing DNA breaks in immunoglobulin (Ig) loci. Dysregulation of RAG1/2 has been linked to the onset of B-cell malignancies, yet the mechanisms controlling RAG1/2 in pre-B cells exposed to excessive DNA damage are not fully understood. In this study, we show that DNA damage-induced activation of p53 initiates a negative-feedback loop which rapidly downregulates RAG1 levels. This feedback loop involves ataxia telangiectasia mutated (ATM) activation, subsequent stabilization of p53, and modulation of microRNA-34a (miR34a) levels, which is one of the p53 targets. Notably, this loop incorporates transcription factor forkhead box P1 (FOXP1) as a downstream effector. The absence of p53 resulted in an increased proportion of IgM+ cells prompted to upregulate RAG1/2 and to undergo Ig light chain (Igl) recombination. Similar results were obtained in primary pre-B cells with depleted levels of miR-34a. We propose that in pre-B cells undergoing Ig gene recombination, the DNA breaks activate a p53/miR-34a/FOXP1-mediated negative-feedback loop that contributes to the rapid downregulation of RAG. This regulation limits the RAG-dependent DNA damage, thereby protecting the stability of the genome during V(D)J rearrangement in developing B cells.
RkJQdWJsaXNoZXIy MTk4NDMw