Katarina Ochodnicka

156 | Chapter 6 References 1. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014). 2. Kuiper, R. P. & Waanders, E. A RAG driver on the road to pediatric ALL. Nat. Genet. 46, 96–98 (2014). 3. Bakhshi, A. et al. Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc. Natl. Acad. Sci. U. S. A. 84, 2396–2400 (1987). 4. Han, Q. et al. RAG1 high expression associated with IKZF1 dysfunction in adult B-cell acute lymphoblastic leukemia. J. Cancer 10, 3842–3850 (2019). 5. Wang, F. et al. Tight regulation of FOXO1 is essential for maintenance of B-cell precursor acute lymphoblastic leukemia. Blood 131, 2929–2942 (2018). 6. Ochodnicka-Mackovicova, K. et al. NF-κB and AKT signaling prevent DNA damage in transformed pre-B cells by suppressing RAG1/2 expression and activity. Blood 126, 1324–1335 (2015). 7. Ochodnicka-Mackovicova, K. et al. The DNA Damage Response Regulates RAG1/2 Expression in Pre-B Cells through ATM-FOXO1 Signaling. J. Immunol. 197, 2918–2929 (2016). 8. Glynn, R. A. & Bassing, C. H. Nemo-Dependent, ATM-Mediated Signals from RAG DNA Breaks at Igk Feedback Inhibit V (κ) Recombination to Enforce Igκ Allelic Exclusion. J. Immunol. 208, 371–383 (2022). 9. Steinel, N. C. et al. The ataxia telangiectasia mutated kinase controls Igκ allelic exclusion by inhibiting secondary Vκ-to-Jκ rearrangements. J. Exp. Med. 210, 233–9 (2013). 10. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013). 11. Cheng, Q. & Chen, J. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 9, 472–478 (2010). 12. Hu, H. et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat. Immunol. 7, 819–826 (2006). 13. Muljo, S. A. & Schlissel, M. S. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat. Immunol. 4, 31–7 (2003). 14. Stadhouders, R. et al. Pre-B cell receptor signaling induces immunoglobulin κ locus accessibility by functional redistribution of enhancer-mediated chromatin interactions. PLoS Biol. 12, e1001791 (2014). 15. van Keimpema, M. et al. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells. Haematologica 102, 573–583 (2017). 16. Brown, P. J. et al. Potentially oncogenic B-cell activation-induced smaller isoforms of FOXP1 are highly expressed in the activated B cell-like subtype of DLBCL. Blood 111, 2816–2824 (2008). 17. Green, M. R., Gandhi, M. K., Courtney, M. J., Marlton, P. & Griffiths, L. Relative abundance of full-length and truncated FOXP1 isoforms is associated with differential NFkappaB activity in Follicular Lymphoma. Leuk. Res. 33, 1699–1702 (2009). 18. van Keimpema, M. et al. The forkhead transcription factor FOXP1 represses human plasma cell differentiation. Blood 126, 2098–2109 (2015). 19. Chang, T.-C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745– 752 (2007). 20. Navarro, F. & Lieberman, J. miR-34 and p53: New Insights into a Complex Functional Relationship. PLoS One 10, e0132767 (2015).

RkJQdWJsaXNoZXIy MTk4NDMw