186 | Chapter 7 17. Teng G, Maman Y, Resch W, et al. RAG Represents a Widespread Threat to the Lymphocyte Genome. Cell. 2015;162(4):751-765. doi:10.1016/j.cell.2015.07.009 18. Collins AM, Watson CT. Immunoglobulin Light Chain Gene Rearrangements, Receptor Editing and the Development of a Self-Tolerant Antibody Repertoire. Front Immunol. 2018;9:2249. doi:10.3389/ fimmu.2018.02249 19. Muljo SA, Schlissel MS. Pre-B and pre-T-cell receptors: conservation of strategies in regulating early lymphocyte development. Immunol Rev. 2000;175:80-93. 20. Schlissel MS, Corcoran LM, Baltimore D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J Exp Med. 1991;173(3):711-720. doi:10.1084/jem.173.3.711 21. Luning Prak ET, Monestier M, Eisenberg RA. B cell receptor editing in tolerance and autoimmunity. Ann N Y Acad Sci. 2011;1217:96121. doi:10.1111/j.1749-6632.2010.05877.x 22. Merelli I, Guffanti A, Fabbri M, et al. RSSsite: a reference database and prediction tool for the identification of cryptic Recombination Signal Sequences in human and murine genomes. Nucleic Acids Res. 2010;38(Web Server issue):W262-7. doi:10.1093/nar/ gkq391 23. Lieber MR, Yu K, Raghavan SC. Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair (Amst). 2006;5(9-10):1234-1245. doi:10.1016/j. dnarep.2006.05.013 24. Marculescu R, Le T, Simon P, Jaeger U, Nadel B. V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J Exp Med. 2002;195(1):85-98. doi:10.1084/ jem.20011578 25. Raghavan SC, Kirsch IR, Lieber MR. Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. J Biol Chem. 2001;276(31):2912629133. doi:10.1074/jbc.M103797200 26. Davila M, Liu F, Cowell LG, et al. Multiple, conserved cryptic recombination signals in VH gene segments: detection of cleavage products only in pro B cells. J Exp Med. 2007;204(13):3195-3208. doi:10.1084/ jem.20071224 27. Rahman NS, Godderz LJ, Stray SJ, Capra JD, Rodgers KK. DNA cleavage of a cryptic recombination signal sequence by RAG1 and RAG2. Implications for partial V(H) gene replacement. J Biol Chem. 2006;281(18):1237012380. doi:10.1074/jbc.M507906200 28. Deng YN, Xia Z, Zhang P, Ejaz S, Liang S. Transcription Factor RREB1: from Target Genes towards Biological Functions. Int J Biol Sci. 2020;16(8):1463-1473. doi:10.7150/ ijbs.40834 29. Paigen K, Petkov PM. PRDM9 and Its Role in Genetic Recombination. Trends Genet. 2018;34(4):291-300. doi:10.1016/j. tig.2017.12.017 30. Wang B, Guo H, Yu H, Chen Y, Xu H, Zhao G. The Role of the Transcription Factor EGR1 in Cancer. Front Oncol. 2021;11:642547. doi:10.3389/fonc.2021.642547 31. Keskin N, Deniz E, Eryilmaz J, et al. PATZ1 Is a DNA Damage-Responsive Transcription Factor That Inhibits p53 Function. Mol Cell Biol. 2015;35(10):1741-1753. doi:10.1128/ MCB.01475-14 32. Chuang JY, Wu CH, Lai MD, Chang WC, Hung JJ. Overexpression of Sp1 leads to p53-dependent apoptosis in cancer cells. Int J cancer. 2009;125(9):2066-2076. doi:10.1002/ ijc.24563 33. Powers NR, Parvanov ED, Baker CL, Walker M, Petkov PM, Paigen K. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo. PLoS Genet. 2016;12(6):e1006146. doi:10.1371/journal. pgen.1006146 34. Li S, Shen L, Chen KN. Association between H3K4 methylation and cancer prognosis: A meta-analysis. Thorac cancer. 2018;9(7):794799. doi:10.1111/1759-7714.12647
RkJQdWJsaXNoZXIy MTk4NDMw