Katarina Ochodnicka

188 | Chapter 7 54. Yurchenko V, Xue Z, Sadofsky M. The RAG1 N-terminal domain is an E3 ubiquitin ligase. Genes Dev. 2003;17(5):581-585. doi:10.1101/ gad.1058103 55. Jones JM, Gellert M. Autoubiquitylation of the V(D)J recombinase protein RAG1. Proc Natl Acad Sci U S A. 2003;100(26):1544615451. doi:10.1073/pnas.2637012100 56. Grazini U, Zanardi F, Citterio E, Casola S, Goding CR, McBlane F. The RING domain of RAG1 ubiquitylates histone H3: a novel activity in chromatin-mediated regulation of V(D)J joining. Mol Cell. 2010;37(2):282-293. doi:10.1016/j.molcel.2009.12.035 57. Beilinson HA, Glynn RA, Yadavalli AD, et al. The RAG1 N-terminal region regulates the efficiency and pathways of synapsis for V(D) J recombination. J Exp Med. 2021;218(10). doi:10.1084/jem.20210250 58. Schabla NM, Swanson PC. The CRL4VPRBP(DCAF1) E3 ubiquitin ligase directs constitutive RAG1 degradation in a non-lymphoid cell line. PLoS One. 2021;16(10):e0258683. doi:10.1371/journal.pone.0258683 59. Schabla NM, Perry GA, Palmer VL, Swanson PC. VprBP (DCAF1) Regulates RAG1 Expression Independently of Dicer by Mediating RAG1 Degradation. J Immunol. 2018;201(3):930-939. doi:10.4049/jimmunol.1800054 60. Dengler HS, Baracho G V, Omori SA, et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol. 2008;9(12):13881398. doi:10.1038/ni.1667 61. Chen J, Limon JJ, Blanc C, Peng SL, Fruman DA. Foxo1 regulates marginal zone B-cell development. Eur J Immunol. 2010;40(7):18901896. doi:10.1002/eji.200939817 62. Chow KT, Timblin GA, McWhirter SM, Schlissel MS. MK5 activates Rag transcription via Foxo1 in developing B cells. J Exp Med. 2013;210(8):1621-1634. doi:10.1084/ jem.20130498 63. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551-563. doi:10.1016/s0092-8674(04)00126-6 64. Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K, Fukamizu A. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci U S A. 2005;102(32):11278-11283. doi:10.1073/pnas.0502738102 65. Oberdoerffer P, Michan S, McVay M, et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell. 2008;135(5):907918. doi:10.1016/j.cell.2008.10.025 66. Verkoczy L, Duong B, Skog P, et al. Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. J Immunol. 2007;178(10):6332-6341. doi:10.4049/jimmunol.178.10.6332 67. Khalil A, Morgan RN, Adams BR, et al. ATM-dependent ERK signaling via AKT in response to DNA double-strand breaks. Cell Cycle. 2011;10(3):481-491. doi:10.4161/ cc.10.3.14713 68. Sekulić A, Hudson CC, Homme JL, et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000;60(13):3504-3513. Accessed November 21, 2014. http://www.ncbi.nlm. nih.gov/pubmed/10910062 69. Amin RH, Schlissel MS. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat Immunol. 2008;9(6):613-622. doi:10.1038/ni.1612 70. Asada S, Daitoku H, Matsuzaki H, et al. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal. 2007;19(3):519-527. doi:10.1016/j. cellsig.2006.08.015 71. Calnan DR, Brunet A. The FoxO code. Oncogene. 2008;27(16):2276-2288. doi:10.1038/ onc.2008.21 72. Mårtensson IL, Keenan RA, Licence S. The pre-B-cell receptor. Curr Opin Immunol. 2007;19(2):137-142. doi:10.1016/j. coi.2007.02.006

RkJQdWJsaXNoZXIy MTk4NDMw