7 General discussion | 189 73. Vettermann C, Schlissel MS. Allelic exclusion of immunoglobulin genes: models and mechanisms. Immunol Rev. 2010;237(1):2242. doi:10.1111/j.1600-065X.2010.00935.x 74. Brady BL, Steinel NC, Bassing CH. Antigen receptor allelic exclusion: an update and reappraisal. J Immunol. 2010;185(7):3801-3808. doi:10.4049/jimmunol.1001158 75. Sadek M, Sheth A, Zimmerman G, Hays E, Vélez-Cruz R. The role of SWI/SNF chromatin remodelers in the repair of DNA double strand breaks and cancer therapy. Front cell Dev Biol. 2022;10:1071786. doi:10.3389/ fcell.2022.1071786 76. Steinel NC, Lee BS, Tubbs AT, et al. The ataxia telangiectasia mutated kinase controls Igκ allelic exclusion by inhibiting secondary Vκ-to-Jκ rearrangements. J Exp Med. 2013;210(2):233-239. doi:10.1084/ jem.20121605 77. Glynn RA, Bassing CH. Nemo-Dependent, ATM-Mediated Signals from RAG DNA Breaks at Igk Feedback Inhibit V (κ) Recombination to Enforce Igκ Allelic Exclusion. J Immunol. 2022;208(2):371-383. doi:10.4049/ jimmunol.2100696 78. Lee BS, Lee BK, Iyer VR, et al. Corrected and Republished from: BCL11A Is a Critical Component of a Transcriptional Network That Activates RAG Expression and V(D) J Recombination. Mol Cell Biol. 2018;38(1). doi:10.1128/MCB.00362-17 79. Schulz D, Vassen L, Chow KT, et al. Gfi1b negatively regulates Rag expression directly and via the repression of FoxO1. J Exp Med. 2012;209(1):187-199. doi:10.1084/ jem.20110645 80. Zhang L, Reynolds TL, Shan X, Desiderio S. Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lymphoid tumorigenesis. Immunity. 2011;34(2):163-174. doi:10.1016/j. immuni.2011.02.003 81. Klein F, Feldhahn N, Mooster JL, et al. Tracing the pre-B to immature B cell transition in human leukemia cells reveals a coordinated sequence of primary and secondary IGK gene rearrangement, IGK deletion, and IGL gene rearrangement. J Immunol. 2005;174(1):367-375. doi:10.4049/jimmunol.174.1.367 82. Melchers F. Checkpoints that control B cell development. J Clin Invest. 2015;125(6):22032210. doi:10.1172/JCI78083 83. Ochodnicka-Mackovicova K, Bahjat M, Bloedjes TA, et al. NF-κB and AKT signaling prevent DNA damage in transformed pre-B cells by suppressing RAG1/2 expression and activity. Blood. 2015;126(11):1324-1335. doi:10.1182/blood-2015-01-621623 84. Lees J, Hay J, Moles MW, Michie AM. The discrete roles of individual FOXO transcription factor family members in B-cell malignancies. Front Immunol. 2023;14:1179101. doi:10.3389/fimmu.2023.1179101 85. Zhang X, Jiang L, Liu H. Forkhead Box Protein O1: Functional Diversity and Post-Translational Modification, a New Therapeutic Target? Drug Des Devel Ther. 2021;15:18511860. doi:10.2147/DDDT.S305016 86. Guldenpfennig C, Teixeiro E, Daniels M. NF-kB’s contribution to B cell fate decisions. Front Immunol. 2023;14:1214095. doi:10.3389/fimmu.2023.1214095 87. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. doi:10.1038/s41392-020-00312-6 88. Siebenlist U, Brown K, Claudio E. Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol. 2005;5(6):435445. doi:10.1038/nri1629 89. Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood. 2010;115(17):3541-3552. doi:10.1182/blood2009-09-243535
RkJQdWJsaXNoZXIy MTk4NDMw