Katarina Ochodnicka

42 | Chapter 2 References 1. Bonilla, F. A. & Oettgen, H. C. Adaptive immunity. J. Allergy Clin. Immunol. 125, S33-40 (2010). 2. Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3-23 (2010). 3. Weiss, A. Structure and function of the T cell antigen receptor. J. Clin. Invest. 86, 1015–22 (1990). 4. Wilson, I. A. & Garcia, K. C. T-cell receptor structure and TCR complexes. Curr. Opin. Struct. Biol. 7, 839–48 (1997). 5. Livák, F. & Petrie, H. T. Access roads for RAGged terrains: control of T cell receptor gene rearrangement at multiple levels. Semin. Immunol. 14, 297–309 (2002). 6. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009). 7. Zhu, J. & Paul, W. E. CD4 T cells: fates, functions, and faults. Blood 112, 1557–69 (2008). 8. Marculescu, R., Le, T., Simon, P., Jaeger, U. & Nadel, B. V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J. Exp. Med. 195, 85–98 (2002). 9. Krem, M. M., Press, O. W., Horwitz, M. S. & Tidwell, T. Mechanisms and clinical applications of chromosomal instability in lymphoid malignancy. Br. J. Haematol. 171, 13–28 (2015). 10. Pieper, K., Grimbacher, B. & Eibel, H. B-cell biology and development. J. Allergy Clin. Immunol. 131, 959–971 (2013). 11. Kwon, K. et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 28, 751–762 (2008). 12. Van de Walle, I. et al. GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate. Nat. Commun. 7, 11171 (2016). 13. Rickert, R. C. New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat. Rev. Immunol. 13, 578–591 (2013). 14. Mårtensson, I.-L., Keenan, R. A. & Licence, S. The pre-B-cell receptor. Curr. Opin. Immunol. 19, 137–142 (2007). 15. Collins, A. M. & Watson, C. T. Immunoglobulin Light Chain Gene Rearrangements, Receptor Editing and the Development of a Self-Tolerant Antibody Repertoire. Front. Immunol. 9, 2249 (2018). 16. Wilson, A., Held, W. & MacDonald, H. R. Two waves of recombinase gene expression in developing thymocytes. J. Exp. Med. 179, 1355–1360 (1994). 17. Zouali, M. Receptor editing and receptor revision in rheumatic autoimmune diseases. Trends Immunol. 29, 103–109 (2008). 18. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992). 19. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855– 867 (1992). 20. Schwarz, K. et al. RAG mutations in human B cell-negative SCID. Science 274, 97–99 (1996). 21. Allen, D. et al. CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications. Nat. Commun. 14, 6771 (2023). 22. Garcia-Perez, L. et al. Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID. Mol. Ther. Methods Clin. Dev. 17, 666–682 (2020). 23. Delmonte, O. M., Schuetz, C. & Notarangelo, L. D. RAG Deficiency: Two Genes, Many Diseases. J. Clin. Immunol. 38, 646–655 (2018). 24. Nemazee, D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 17, 281–294 (2017). 25. Luning Prak, E. T., Monestier, M. & Eisenberg, R. A. B cell receptor editing in tolerance and autoimmunity. Ann. N. Y. Acad. Sci. 1217, 96–121 (2011).

RkJQdWJsaXNoZXIy MTk4NDMw