Katarina Ochodnicka

2 Role of RAG1 and RAG2 in B-cell development | 43 26. Brady, B. L., Steinel, N. C. & Bassing, C. H. Antigen receptor allelic exclusion: an update and reappraisal. J. Immunol. 185, 3801–3808 (2010). 27. Vettermann, C. & Schlissel, M. S. Allelic exclusion of immunoglobulin genes: models and mechanisms. Immunol. Rev. 237, 22–42 (2010). 28. Liang, H.-E., Hsu, L.-Y., Cado, D. & Schlissel, M. S. Variegated transcriptional activation of the immunoglobulin kappa locus in pre-b cells contributes to the allelic exclusion of light-chain expression. Cell 118, 19–29 (2004). 29. Coleclough, C., Perry, R. P., Karjalainen, K. & Weigert, M. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature 290, 372–378 (1981). 30. Alt, F. W., Enea, V., Bothwell, A. L. & Baltimore, D. Activity of multiple light chain genes in murine myeloma cells producing a single, functional light chain. Cell 21, 1–12 (1980). 31. Mostoslavsky, R., Alt, F. W. & Rajewsky, K. The lingering enigma of the allelic exclusion mechanism. Cell 118, 539–544 (2004). 32. Yancopoulos, G. D. & Alt, F. W. Regulation of the assembly and expression of variable-region genes. Annu. Rev. Immunol. 4, 339–368 (1986). 33. Lutz, J. et al. Pro-B cells sense productive immunoglobulin heavy chain rearrangement irrespective of polypeptide production. Proc. Natl. Acad. Sci. U. S. A. 108, 10644– 10649 (2011). 34. Aslam, M. A. et al. The Ig heavy chain protein but not its message controls early B cell development. Proc. Natl. Acad. Sci. U. S. A. 117, 31343–31352 (2020). 35. Chaumeil, J. et al. The RAG2 C-terminus and ATM protect genome integrity by controlling antigen receptor gene cleavage. Nat. Commun. 4, 2231 (2013). 36. Hewitt, S. L. et al. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nat. Immunol. 10, 655–664 (2009). 37. Netea, M. G., Schlitzer, A., Placek, K., Joosten, L. A. B. & Schultze, J. L. Innate and Adaptive Immune Memory: an Evolutionary Continuum in the Host’s Response to Pathogens. Cell Host Microbe 25, 13–26 (2019). 38. Charles A Janeway, J., Travers, P., Walport, M. & Shlomchik, M. J. The structure of a typical antibody molecule. (2001). 39. Stavnezer, J., Guikema, J. E. J. & Schrader, C. E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–92 (2008). 40. Charles A Janeway, J., Travers, P., Walport, M. & Shlomchik, M. J. Structural variation in immunoglobulin constant regions. (2001). 41. Matthews, A. J., Zheng, S., DiMenna, L. J. & Chaudhuri, J. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv. Immunol. 122, 1–57 (2014). 42. Chi, X., Li, Y. & Qiu, X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 160, 233–247 (2020). 43. Stavnezer, J., Guikema, J. E. J. & Schrader, C. E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008). 44. Staszewski, O. et al. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol. Cell 41, 232–242 (2011). 45. Hasham, M. G. et al. Activation-induced cytidine deaminase-initiated off-target DNA breaks are detected and resolved during S phase. J. Immunol. 189, 2374–2382 (2012). 46. Khair, L., Baker, R. E., Linehan, E. K., Schrader, C. E. & Stavnezer, J. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells. PLoS Genet. 11, e1005438 (2015). 47. Oettinger, M. A. et al. The recombination activating genes, RAG 1 and RAG 2, are on chromosome 11p in humans and chromosome 2p in mice. Immunogenetics 35, 97–101 (1992).

RkJQdWJsaXNoZXIy MTk4NDMw