44 | Chapter 2 48. Liu, C., Zhang, Y., Liu, C. C. & Schatz, D. G. Structural insights into the evolution of the RAG recombinase. Nat. Rev. Immunol. 22, 353–370 (2022). 49. Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980). 50. Orgel, L. E., Crick, F. H. & Sapienza, C. Selfish DNA. Nature vol. 288 645–646 (1980). 51. Lescale, C. & Deriano, L. The RAG recombinase: Beyond breaking. Mech. Ageing Dev. 165, 3–9 (2017). 52. Helmink, B. A. & Sleckman, B. P. The response to and repair of RAG-mediated DNA double-strand breaks. Annu. Rev. Immunol. 30, 175–202 (2012). 53. Zhang, Y. et al. Transposon molecular domestication and the evolution of the RAG recombinase. Nature 569, 79–84 (2019). 54. Martin, E. C. et al. Identification of RAG-like transposons in protostomes suggests their ancient bilaterian origin. Mob. DNA 11, 17 (2020). 55. Schatz, D. G., Oettinger, M. A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–48 (1989). 56. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990). 57. Kim, M.-S., Lapkouski, M., Yang, W. & Gellert, M. Crystal structure of the V(D)J recombinase RAG1-RAG2. Nature 518, 507–511 (2015). 58. Liang, H.-E. et al. The ‘dispensable’ portion of RAG2 is necessary for efficient V-to-DJ rearrangement during B and T cell development. Immunity 17, 639–651 (2002). 59. Corneo, B., Benmerah, A. & Villartay, J.-P. de. A short peptide at the C terminus is responsible for the nuclear localization of RAG2. Eur. J. Immunol. 32, 2068–2073 (2002). 60. Mizuta, R., Mizuta, M., Araki, S. & Kitamura, D. RAG2 is down-regulated by cytoplasmic sequestration and ubiquitin-dependent degradation. J. Biol. Chem. 277, 41423– 41427 (2002). 61. Matthews, A. G. W. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1110 (2007). 62. Chao, J., Rothschild, G. & Basu, U. Ubiquitination events that regulate recombination of immunoglobulin Loci gene segments. Front. Immunol. 5, 100 (2014). 63. Jones, J. M. & Simkus, C. The roles of the RAG1 and RAG2 ‘non-core’ regions in V(D)J recombination and lymphocyte development. Arch. Immunol. Ther. Exp. (Warsz). 57, 105–116 (2009). 64. Jones, J. M. et al. The RAG1 V(D)J recombinase/ubiquitin ligase promotes ubiquitylation of acetylated, phosphorylated histone 3.3. Immunol. Lett. 136, 156–162 (2011). 65. Singh, S. K. & Gellert, M. Role of RAG1 autoubiquitination in V(D)J recombination. Proc. Natl. Acad. Sci. U. S. A. 112, 8579–8583 (2015). 66. Ru, H., Zhang, P. & Wu, H. Structural gymnastics of RAG-mediated DNA cleavage in V(D) J recombination. Curr. Opin. Struct. Biol. 53, 178–186 (2018). 67. Swanson, P. C. The DDE motif in RAG-1 is contributed in trans to a single active site that catalyzes the nicking and transesterification steps of V(D)J recombination. Mol. Cell. Biol. 21, 449–458 (2001). 68. Banerjee, J. K. & Schatz, D. G. Synapsis alters RAG-mediated nicking at Tcrb recombination signal sequences: implications for the “beyond 12/23” rule. Mol. Cell. Biol. 34, 2566–2580 (2014). 69. Bassing, C. H. et al. Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule. Nature 405, 583–586 (2000). 70. Hesse, J. E., Lieber, M. R., Gellert, M. & Mizuuchi, K. Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V-(D)-J joining signals. Cell 49, 775–783 (1987). 71. Teng, G. et al. RAG Represents a Widespread Threat to the Lymphocyte Genome. Cell 162, 751–765 (2015). 72. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–81 (1983).
RkJQdWJsaXNoZXIy MTk4NDMw