Katarina Ochodnicka

46 | Chapter 2 91. Swanson, P. C., Volkmer, D. & Wang, L. Fulllength RAG-2, and not full-length RAG-1, specifically suppresses RAG-mediated transposition but not hybrid joint formation or disintegration. J. Biol. Chem. 279, 4034–4044 (2004). 92. Chatterji, M., Tsai, C.-L. & Schatz, D. G. Mobilization of RAG-generated signal ends by transposition and insertion in vivo. Mol. Cell. Biol. 26, 1558–1568 (2006). 93. Reddy, Y. V. R., Perkins, E. J. & Ramsden, D. A. Genomic instability due to V(D)J recombination-associated transposition. Genes Dev. 20, 1575–1582 (2006). 94. Messier, T. L., O’Neill, J. P., Hou, S.-M., Nicklas, J. A. & Finette, B. A. In vivo transposition mediated by V(D)J recombinase in human T lymphocytes. EMBO J. 22, 1381–1388 (2003). 95. Curry, J. D. et al. Chromosomal reinsertion of broken RSS ends during T cell development. J. Exp. Med. 204, 2293–2303 (2007). 96. Kirkham, C. M. et al. Cut-and-Run: A Distinct Mechanism by which V(D)J Recombination Causes Genome Instability. Mol. Cell 74, 584-597.e9 (2019). 97. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–25 (2014). 98. Smith, A. L., Scott, J. N. F. & Boyes, J. The ESC: The Dangerous By-Product of V(D)J Recombination. Front. Immunol. 10, 1572 (2019). 99. Rommel, P. C., Oliveira, T. Y., Nussenzweig, M. C. & Robbiani, D. F. RAG1/2 induces genomic insertions by mobilizing DNA into RAG1/2-independent breaks. J. Exp. Med. 214, 815–831 (2017). 100. Lewis, S. M., Agard, E., Suh, S. & Czyzyk, L. Cryptic signals and the fidelity of V(D)J joining. Mol. Cell. Biol. 17, 3125–3136 (1997). 101. Rodgers, W., Byrum, J. N., Simpson, D. A., Hoolehan, W. & Rodgers, K. K. RAG2 localization and dynamics in the pre-B cell nucleus. PLoS One 14, e0216137 (2019). 102. Teng, G. & Schatz, D. G. Regulation and Evolution of the RAG Recombinase. Adv. Immunol. 128, 1–39 (2015). 103. Gigi, V. et al. RAG2 mutants alter DSB repair pathway choice in vivo and illuminate the nature of ‘alternative NHEJ’. Nucleic Acids Res. 42, 6352–6364 (2014). 104. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014). 105. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008). 106. Haydu, J. E. et al. An activating intragenic deletion in NOTCH1 in human T-ALL. Blood 119, 5211–5214 (2012). 107. Mendes, R. D. et al. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. Blood 124, 567–578 (2014). 108. Aplan, P. D. et al. Disruption of the human SCL locus by ‘illegitimate’ V-(D)-J recombinase activity. Science 250, 1426–1429 (1990). 109. Onozawa, M. & Aplan, P. D. Illegitimate V(D) J recombination involving nonantigen receptor loci in lymphoid malignancy. Genes. Chromosomes Cancer 51, 525–535 (2012). 110. Raghavan, S. C., Gu, J., Swanson, P. C. & Lieber, M. R. The structure-specific nicking of small heteroduplexes by the RAG complex: implications for lymphoid chromosomal translocations. DNA Repair (Amst). 6, 751–759 (2007). 111. Nambiar, M. et al. Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic Acids Res. 39, 936–948 (2011). 112. Santagata, S. et al. The RAG1/RAG2 complex constitutes a 3’ flap endonuclease: implications for junctional diversity in V(D)J and transpositional recombination. Mol. Cell 4, 935–947 (1999). 113. Raghavan, S. C., Swanson, P. C., Wu, X., Hsieh, C.-L. & Lieber, M. R. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 428, 88–93 (2004).

RkJQdWJsaXNoZXIy MTk4NDMw