Katarina Ochodnicka

3 RAG1/2 introduces double-stranded breaks at non-Ig loci | 73 References 1. Schatz DG, Swanson PC. V(D)J recombination: mechanisms of initiation. Annu Rev Genet. 2011;45:167-202. doi:10.1146/annurev-genet-110410-132552 2. Zhao B, Rothenberg E, Ramsden DA, Lieber MR. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol. 2020;21(12):765781. doi:10.1038/s41580-020-00297-8 3. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181-211. doi:10.1146/ annurev.biochem.052308.093131 4. Bian L, Meng Y, Zhang M, Li D. MRE11RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer. 2019;18(1):169. doi:10.1186/s12943-019-1100-5 5. Kaczmarska A, Derebas J, Pinkosz M, Niedźwiecki M, Lejman M. The Landscape of Secondary Genetic Rearrangements in Pediatric Patients with B-Cell Acute Lymphoblastic Leukemia with t(12;21). Cells. 2023;12(3). doi:10.3390/cells12030357 6. Yeung DTO, Osborn MP, White DL. B-cell acute lymphoblastic leukaemia: recent discoveries in molecular pathology, their prognostic significance, and a review of the current classification. Br J Haematol. 2022;197(1):13-27. doi:10.1111/bjh.17879 7. Ryan SL, Peden JF, Kingsbury Z, et al. Whole genome sequencing provides comprehensive genetic testing in childhood B-cell acute lymphoblastic leukaemia. Leukemia. 2023;37(3):518-528. doi:10.1038/s41375-02201806-8 8. Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373(16):1541-1552. doi:10.1056/ NEJMra1400972 9. Malczewska M, Kośmider K, Bednarz K, Ostapińska K, Lejman M, Zawitkowska J. Recent Advances in Treatment Options for Childhood Acute Lymphoblastic Leukemia. Cancers (Basel). 2022;14(8). doi:10.3390/cancers14082021 10. Wiemels J. Chromosomal translocations in childhood leukemia: natural history, mechanisms, and epidemiology. J Natl Cancer Inst Monogr. 2008;(39):87-90. doi:10.1093/ jncimonographs/lgn006 11. Papaemmanuil E, Rapado I, Li Y, et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet. 2014;46(2):116-125. doi:10.1038/ng.2874 12. Wiemels JL, Leonard BC, Wang Y, et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2APBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2002;99(23):15101-15106. doi:10.1073/ pnas.222481199 13. Teng G, Maman Y, Resch W, et al. RAG Represents a Widespread Threat to the Lymphocyte Genome. Cell. 2015;162(4):751-765. doi:10.1016/j.cell.2015.07.009 14. Maman Y, Teng G, Seth R, Kleinstein SH, Schatz DG. RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2. Nucleic Acids Res. 2016;44(20):96249637. doi:10.1093/nar/gkw633 15. Rahman NS, Godderz LJ, Stray SJ, Capra JD, Rodgers KK. DNA cleavage of a cryptic recombination signal sequence by RAG1 and RAG2. Implications for partial V(H) gene replacement. J Biol Chem. 2006;281(18):1237012380. doi:10.1074/jbc.M507906200 16. Zhang M, Swanson PC. V(D)J recombinase binding and cleavage of cryptic recombination signal sequences identified from lymphoid malignancies. J Biol Chem. 2008;283(11):6717-6727. doi:10.1074/jbc. M710301200

RkJQdWJsaXNoZXIy MTk4NDMw