Ramzi Khalil

Chapter 2 44 21. Poureetezadi, S. J.&Wingert, R. A.Little fish, big catch: zebrafish as a model for kidney disease. Kidney. Int.89,1204–1210 (2016). 22. Raghupathy, R. K., McCulloch, D. L., Akhtar, S., Al-mubrad, T. M.&Shu, X.Zebrafish model for the genetic basis of X-linked retinitis pigmentosa. Zebrafish. 10, 62–69 (2013). 23. Tietz Bogert, P. S.et al.The zebrafish as a model to study polycystic liver disease. Zebrafish.10, 211–217 (2013). 24. Schlegel, A.&Gut, P. Metabolic insights from zebrafish genetics, physiology, and chemical biology. Cell. Mol. Life. Sci.72, 2249–2260 (2015). 25. Drummond, I. A. Kidney development and disease in the zebrafish. J. Am. Soc. Nephrol.16, 299–304 (2005). 26. McCampbell, K. K., Springer, K. N.&Wingert, R. A.Atlas of cellular dynamics during zebrafish adult kidney regeneration. Stem. Cells. Int.2015, 547636 (2015). 27. Drummond, I. A.et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development.125, 4655–4667 (1998). 28. Cheng, C. N.&Wingert, R. A.Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish. Dev. Biol. 399, 100–116 (2015). 29. Ebarasi, L., Oddsson, A., Hultenby, K., Betsholtz, C.&Tryggvason, K. Zebrafish: a model system for the study of vertebrate renal development, function, and pathophysiology. Curr. Opin. Nephrol. Hypertens. 20, 416–424 (2011). 30. McKee, R. A.&Wingert, R. A. Zebrafish Renal Pathology: Emerging Models of Acute Kidney Injury. Curr. Pathobiol. Rep.3, 171–181 (2015). 31. Gerlach, G. F.&Wingert, R. A. Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta. Dev. Biol.396, 183–200 (2015). 32. McKee, R., Gerlach, G. F., Jou, J., Cheng, C. N.&Wingert, R. A.Temporal and spatial expression of tight junction genes during zebrafish pronephros development. Gene. Expr. Patterns. 16, 104–113 (2014). 33. MacRae, C. A.&Peterson, R. T.Zebrafish as tools for drug discovery. Nat. Rev. Drug. Discov.14, 721–731 (2015). 34. Attard, M.et al. Severity of phenotype in cystinosis varies with mutations in the CTNS gene: predicted effect on the model of cystinosin. Hum. Mol. Genet.8, 2507–2514 (1999). 35. Huh, W.et al.Expression of nephrin in acquired human glomerular disease. Nephrol. Dial. Transplant. 17, 478–484 (2002). 36. Rider, S. A. et al.Techniques for the in vivo assessment of cardio-renal function in zebrafish (Danio rerio) larvae. J. Physiol.590, 1803–1809 (2012). 37. Ivanova, E. A. et al. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin. PLoS One.10,e0120998 (2015). 38. Oltrabella, F. et al. The Lowe syndrome protein OCRL1 is required for endocytosis in the zebrafish pronephric tubule. PLoS. Genet.11, e1005058 (2015). 39. Wilmer, M. J., Christensen, E. I., van den Heuvel, L. P., Monnens, L. A. &Levtchenko, E. N. Urinary protein excretion pattern and renal expression of megalin and cubilin in nephropathic cystinosis. Am. J. Kidney. Dis. 51, 893–903 (2008). 40. Ali, S., Champagne, D. L., Spaink H. P.& Richardson, M. K.Zebrafish embryos and larvae: A new generation of disease models and drug screens. Birth. Defects. Res. C. Embryo. Today.93, 115–133 (2011). 41. Howe, K.et al.The zebrafish reference genome sequence and its relationship to the human genome. Nature.496, 498–503 (2013). 42. Bedell, V. M., Westcot, S. E. &Ekker, S. C.Lessons from morpholino-based screening in zebrafish. Brief. Funct. Genomics.10, 181–188 (2011).

RkJQdWJsaXNoZXIy MTk4NDMw