Jasmin Annica Kuhn-Keller

15 General Introduction 1 1.6 REFERENCES 1. World Health Organization. Dementia. Fact Sheet. 2023. https://www.who.int/news-room/ fact-sheets/detail/dementia (accessed 23 Feb 2024). 2. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D et al. Dementia prevention, intervention, and care. The Lancet 2017; 390: 2673–2734. 3. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol 2019; 18: 684–696. 4. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: Insights from neuroimaging. Lancet Neurol 2013; 12: 483–497. 5. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689–701. 6. Duering M, Biessels GJ, Brodtmann A, Chen C, Cordonnier C, de Leeuw FE et al. Neuroimaging standards for research into small vessel disease—advances since 2013. Lancet Neurol 2023; 22: 602–618. 7. Voigt S, Koemans EA, Rasing I, van Etten ES, Terwindt GM, Baas F et al. Minocycline for sporadic and hereditary cerebral amyloid angiopathy (BATMAN): study protocol for a placebo-controlled randomized double-blind trial. Trials 2023; 24: 1–6. 8. Hajnal J V., de Coene B, Lewis PD, Baudouin CJ, Cowan FM, Pennock JM et al. High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr 1992; 16: 506–513. 9. de Bresser J, Portegies MP, Leemans A, Biessels GJ, Kappelle LJ, Viergever MA. A comparison of MR based segmentation methods for measuring brain atrophy progression. Neuroimage 2011; 54: 760–768. 10. Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E et al. Brain atrophy in Alzheimer’s Disease and aging. Ageing Res Rev 2016; 30: 25–48. 11. Balakrishnan R, Valdés Hernández M del C, Farrall AJ. Automatic segmentation of white matter hyperintensities from brain magnetic resonance images in the era of deep learning and big data – A systematic review. Computerized Medical Imaging and Graphics 2021; 88: 101867. 12. Kuijf HJ, Casamitjana A, Collins DL, Dadar M, Georgiou A, Ghafoorian M et al. Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge. IEEE Trans Med Imaging 2019; 38: 2556–2568. 13. Charidimou A, Boulouis G, Frosch MP, Baron JC, Pasi M, Albucher JF et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI– neuropathology diagnostic accuracy study. Lancet Neurol 2022; 21: 714–725. 14. Benveniste H, Nedergaard M. Cerebral small vessel disease: A glymphopathy? Curr Opin Neurobiol 2022; 72: 15–21. 15. van Veluw SJ, Benveniste H, van Osch MJP, Clearance the LFTN of E on B, Bakker ENTP, Carare RO et al. A translational approach towards understanding brain waste clearance in cerebral amyloid angiopathy. Eur Heart J 2024. 16. Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis 2016; 93: 215–225. 17. Ringstad G, Valnes LM, Dale AM, Pripp AH, Vatnehol SAS, Emblem KE et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 2018; 3. 18. Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J Am Heart Assoc 2015; 4: 001140.

RkJQdWJsaXNoZXIy MTk4NDMw