Jasmin Annica Kuhn-Keller

51 White matter hyperintensity shape and long-term progression of cerebrovascular disease 3 3.8 REFERENCES 1. Alber J, Alladi S, Bae H, Barton DA, Beckett LA, Bell JM et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities. Alzheimer’s & Dementia: Translational Research & Clinical Interventions 2019; 5: 107–117. 2. Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat Rev Neurol 2015; 11: 157–165. 3. Ghaznawi R, Geerlings MI, Jaarsma-Coes M, Hendrikse J, Bresser J de, Group on behalf of the U-SS. Association of White Matter Hyperintensity Markers on MRI and Long-term Risk of Mortality and Ischemic Stroke. Neurology 2021; 96: e2172–e2183. 4. Keller JA, Sigurdsson S, Klaassen K, Hirschler L, van Buchem MA, Launer LJ et al. White matter hyperintensity shape is associated with long-term dementia risk. Alzheimer’s and Dementia 2023; 19: 5632-5641. 5. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993; 43: 1683–1689. 6. Harris TB, Launer LJ, Eiriksdottir G, Kjartansson O, Jonsson P V., Sigurdsson G et al. Age, gene/environment susceptibility-reykjavik study: Multidisciplinary applied phenomics. Am J Epidemiol 2007; 165: 1076–1087. 7. Schmidt P. Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging. (Maximilians-Universität München, 2017). 8. Ghaznawi R, Geerlings MI, Jaarsma-Coes MG, Zwartbol MHT, Kuijf HJ, van der Graaf Y et al. The association between lacunes and white matter hyperintensity features on MRI: The SMART-MR study. Journal of Cerebral Blood Flow and Metabolism 2019; 39: 2486–2496. 9. Zijdenbos AP, Forghani R, Evans AC. Automatic ‘pipeline’ analysis of 3-D MRI data for clinical trials: Application to multiple sclerosis. IEEE Trans Med Imaging 2002; 21: 1280–1291. 10. Sigurdsson S, Aspelund T, Forsberg L, Fredriksson J, Kjartansson O, Oskarsdottir B et al. Brain tissue volumes in the general population of the elderly The AGES-Reykjavik Study. Neuroimage 2012; 59: 3862–3870. 11. Sigurdsson S, Aspelund T, Kjartansson O, Gudmundsson E, Jonsson P V., Van Buchem MA et al. Cerebrovascular Risk-Factors of Prevalent and Incident Brain Infarcts in the General Population: The AGES-Reykjavik Study. Stroke 2022; 53: 1199–1206. 12. Ding J, Sigurosson S, Jónsson P V., Eiriksdottir G, Meirelles O, Kjartansson O et al. Space and location of cerebral microbleeds, cognitive decline, and dementia in the community. Neurology 2017; 88: 2089–2097. 13. Saczynski JS, Sigurdsson S, Jonsdottir MK, Eiriksdottir G, Jonsson P V., Garcia ME et al. Cerebral infarcts and cognitive performance: importance of location and number of infarcts. Stroke 2009; 40: 677–682. 14. Ding J, Sigurðsson S, Jónsson P V., Eiriksdottir G, Charidimou A, Lopez OL et al. Large MRIvisible perivascular spaces, cerebral small vessel disease progression and risk of dementia: the AGES-Reykjavik Study. JAMA Neurol 2017; 74: 1105. 15. Kim KW, MacFall JR, Payne ME. Classification of White Matter Lesions on Magnetic Resonance Imaging in Elderly Persons. Biol Psychiatry 2008; 64: 273–280. 16. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: Insights from neuroimaging. Lancet Neurol 2013; 12: 483–497. 17. Adachi T, Kobayashi S, Yamaguchi S, Okada K. MRI findings of small subcortical ‘lacunar-like’ infarction resulting from large vessel disease. J Neurol 2000; 247: 280–285.

RkJQdWJsaXNoZXIy MTk4NDMw