Jasmin Annica Kuhn-Keller

99 White matter hyperintensity shape is associated with long-term dementia risk 5 5.7 REFERENCES 1. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18:684-696 2. van Veluw SJ, Arfanakis K, Schneider JA. Neuropathology of vascular brain health: insights from ex vivo magnetic resonance imaging– histopathology studies in cerebral small vessel disease. Stroke. 2022;53:404-415. 3. Dichgans M, Zietemann V. Prevention of vascular cognitive impair- ment. Stroke. 2012;43:3137-3146. 4. Bath PM, Wardlaw JM. Pharmacological treatment and prevention of cerebral small vessel disease: a review of potential interventions. Int J Stroke. 2015;10:469-478. 5. Mok V, Kim JS. Prevention and management of cerebral small vessel disease. J Stroke. 2015;17:111-122. 6. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822-838. 7. Alber J, Alladi S, Bae H, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities. Alzheimer’s. Dement Transl Res Clin Interv. 2019;5:107-117. 8. Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol. 2015;11:157- 165. 9. Mortamais M, Artero S, Ritchie K. Cerebral white matter hyperintensities in the prediction of cognitive decline and incident dementia. Int Rev Psychiatry. 2013;25:686-698. 10. Gouw AA, Seewann A, Van Der Flier WM, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82:126-135. 11. Kim KW, MacFall JR, Payne ME. Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol Psychiatry. 2008;64:273-280. 12. Fazekas F, Kleinert R, Offenbacher H, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43:1683-1689. 13. Ghaznawi R, Geerlings MI, Jaarsma-Coes M, Hendrikse J, de BresserJ. Group on behalf of the U-SS. Association of white matter hyperintensity markers on MRI and long-term risk of mortality and ischemic stroke. Neurology. 2021;96:e2172-e2183. 14. Harris TB, Launer LJ, Eiriksdottir G, et al. Age, gene/environment susceptibility-reykjavik study: multidisciplinary applied phenomics. Am J Epidemiol. 2007;165:1076-1087. 15. Saczynski JS, Sigurdsson S, Jonsdottir MK, et al. Cerebral infarcts and cognitive performance: importance of location and number of infarcts. Stroke. 2009;40:677-682. 16. Morris JN, Hawes C, Fries BE, et al. Designing the National Res- ident Assessment Instrument for Nursing Homes. Gerontologist. 1990;30:293-307. 17. Sveinbjornsdottir S, Sigurdsson S, Aspelund T, et al. Cerebral microbleeds in the population based AGES-Reykjavik study: prevalence and location. J Neurol Neurosurg Psychiatry. 2008;79:1002-1006. 18. Ghaznawi R, Geerlings MI, Jaarsma-Coes MG, et al. The association between lacunes and white matter hyperintensity features on MRI: the SMART-MR study. J Cereb Blood Flow Metab. 2019;39:2486-2496. 19. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. Elastix: a toolbox for intensity-based medical image registration. IEEE TransMed Imaging. 2010;29:196-205. 20. Schmidt P. Bayesian Inference for Structured Additive Regression Models for Large-Scale Problems with Applications to Medical Imaging. Maximilians-Universität München; 2017.

RkJQdWJsaXNoZXIy MTk4NDMw