Tjitske van Engelen

59 Biomarkers in sepsis 52. Mejias A, Dimo B, Suarez NM, Garcia C, Suarez-Arrabal MC, Jartti T, et al. Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection. PLoS medicine. 2013;10(11):e1001549. 53. Herberg JA, Kaforou M, Wright VJ, Shailes H, Eleftherohorinou H, Hoggart CJ, et al. Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children. Jama. 2016;316(8):835-45. 54. Davenport EE, Burnham KL, Radhakrishnan J, Humburg P, Hutton P, Mills TC, et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. The Lancet Respiratory medicine. 2016;4(4):259-71. 55. Wong HR, Salisbury S, Xiao Q, Cvijanovich NZ, Hall M, Allen GL, et al. The pediatric sepsis biomarker risk model. Critical care (London, England). 2012;16(5):R174. 56. Wong HR. Genome-wide expression profiling in pediatric septic shock. Pediatric research. 2013;73(4 Pt 2):564-9. 57. Wong HR, Lindsell CJ, Pettila V, Meyer NJ, Thair SA, Karlsson S, et al. A multibiomarkerbased outcome risk stratification model for adult septic shock*. Critical care medicine. 2014;42(4):781-9. 58. Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, et al. Improved Risk Stratification in Pediatric Septic Shock Using Both Protein and mRNA Biomarkers: PERSEVERE-XP. American journal of respiratory and critical care medicine. 2017. 59. Scicluna BP, van der Poll T. Turning a New Page in Sepsis Molecular Diagnostics Necessitates Context-Specific Biomarkers. Critical care medicine. 2017;45(4):e457. 60. Ludwig KR, Hummon AB. Mass spectrometry for the discovery of biomarkers of sepsis. Molecular bioSystems. 2017. 61. Oved K, Cohen A, Boico O, Navon R, Friedman T, Etshtein L, et al. A novel host-proteome signature for distinguishing between acute bacterial and viral infections. PloS one. 2015;10(3):e0120012. 62. DeCoux A, Tian Y, DeLeon-Pennell KY, Nguyen NT, de Castro Bras LE, Flynn ER, et al. Plasma Glycoproteomics Reveals Sepsis Outcomes Linked to Distinct Proteins in Common Pathways. Critical care medicine. 2015;43(10):2049-58. 63. Schmerler D, Neugebauer S, Ludewig K, Bremer-Streck S, Brunkhorst FM, Kiehntopf M. Targeted metabolomics for discrimination of systemic inflammatory disorders in critically ill patients. Journal of lipid research. 2012;53(7):1369-75. 64. Rogers AJ, McGeachie M, Baron RM, Gazourian L, Haspel JA, Nakahira K, et al. Metabolomic derangements are associated with mortality in critically ill adult patients. PloS one. 2014;9(1):e87538. 65. Mickiewicz B, Duggan GE, Winston BW, Doig C, Kubes P, Vogel HJ. Metabolic profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach for septic shock. Critical care medicine. 2014;42(5):1140-9. 66. Langley RJ, Tsalik EL, van Velkinburgh JC, Glickman SW, Rice BJ, Wang C, et al. An integrated clinico-metabolomic model improves prediction of death in sepsis. Science translational medicine. 2013;5(195):195ra95. 67. Neugebauer S, Giamarellos-Bourboulis EJ, Pelekanou A, Marioli A, Baziaka F, Tsangaris I, et al. Metabolite Profiles in Sepsis: Developing Prognostic Tools Based on the Type of Infection. Critical care medicine. 2016;44(9):1649-62. 68. Ferrario M, Cambiaghi A, Brunelli L, Giordano S, Caironi P, Guatteri L, et al. Mortality prediction in patients with severe septic shock: a pilot study using a target metabolomics approach. Scientific reports. 2016;6:20391. 69. Wang L, Ko ER, Gilchrist JJ, Pittman KJ, Rautanen A, Pirinen M, et al. Human genetic and metabolite variation reveals that methylthioadenosine is a prognostic biomarker and an inflammatory regulator in sepsis. Science advances. 2017;3(3):e1602096. 3

RkJQdWJsaXNoZXIy MTk4NDMw