135 Tracking talented swimmers during the junior-to-senior transition 6 42. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ 43. Rejman, M., Tyc, Ł., Kociuba, M., Bornikowska, A., Rudnik, D., & Kozieł, S. (2018). Anthropometric predispositions for swimming from the perspective of biomechanics. Acta of bioengineering and biomechanics, 20(4), 151–159. https://doi.org/10.5277/ABB-01254-2018-03 44. Ruiz-Navarro, J. J., Gay, A., Zacca, R., Cuenca-Fernández, F., López-Belmonte, Ó., LópezContreras, G., Morales-Ortiz, E., & Arellano, R. (2022). Biophysical Impact of 5-Week Training Cessation on Sprint Swimming Performance. International journal of sports physiology and performance, 17(10), 1463–1472. https://doi.org/10.1123/ijspp.2022-0045 45. Saavedra, J. M., Escalante, Y., & Rodríguez, F. A. (2010). A multivariate analysis of performance in young swimmers. Pediatric exercise science, 22(1), 135–151. https://doi.org/10.1123/pes.22.1.135 46. Sánchez J, Arellano R. (2002). Stroke index values according to level, gender, swimming style and event race distance. In K. Gianikellis, B. R. Mason, H. M. Toussaint, R. Arellano & R. H. Sanders (Eds.), Applied proceedings -Swimming- XXth International Symposium on Biomechanics in Sports, (pp. 56-59). University of Extremadura. 47. Skorski, S., & Hecksteden, A. (2021). Coping With the "Small Sample-Small Relevant Effects" Dilemma in Elite Sport Research. International journal of sports physiology and performance, 16(11), 1559–1560. https://doi.org/10.1123/ijspp.2021-0467 48. Stambulova, N., Alfermann, D., Statler, T., & Côté, J. (2009). ISSP position stand: Career development and transitions of athletes. International Journal of Sport and Exercise Psychology, 7(4), 395–412. https://doi.org/10.1080/1612197X.2009.9671916 49. Stoter, I. K., Koning, R. H., Visscher, C., & Elferink-Gemser, M. T. (2019). Creating performance benchmarks for the future elites in speed skating. Journal of sports sciences, 37(15), 1770–1777. https://doi.org/10.1080/02640414.2019.1593306 50. Swimrankings. (2022, October 20). Swim performance database. https://www.swimrankings.net 51. Vaeyens, R., Lenoir, M., Williams, A. M., & Philippaerts, R. M. (2008). Talent identification and development programmes in sport : current models and future directions. Sports medicine (Auckland, N.Z.), 38(9), 703–714. https://doi.org/10.2165/00007256-200838090-00001 52. West, D. J., Owen, N. J., Cunningham, D. J., Cook, C. J., & Kilduff, L. P. (2011). Strength and power predictors of swimming starts in international sprint swimmers. Journal of strength and conditioning research, 25(4), 950–955. https://doi.org/10.1519/JSC.0b013e3181c8656f 53. World Aquatics. (2021, August 8). Results Olympic Games Tokyo 2020. https://www.worldaquatics. com/competitions/ 54. Wylleman, P., & Lavallee, D. (2004). A Developmental Perspective on Transitions Faced by Athletes. In M. R. Weiss (Ed.), Developmental sport and exercise psychology: A lifespan perspective (pp. 503–523). Fitness Information Technology. 55. Zacca, R., Toubekis, A., Freitas, L., Silva, A. F., Azevedo, R., Vilas-Boas, J. P., Pyne, D. B., Castro, F. A. S., & Fernandes, R. J. (2019). Effects of detraining in age-group swimmers performance, energetics and kinematics. Journal of sports sciences, 37(13), 1490–1498. https://doi.org/10.1080 /02640414.2019.1572434 56. Zimmerman, B. J. (1986). Becoming a self-regulated learner: Which are the key subprocesses? Contemporary Educational Psychology, 11(4), 307–313. https://doi.org/10.1016/0361476X(86)90027-5
RkJQdWJsaXNoZXIy MTk4NDMw