Aylin Post

52 Chapter 3 17. Malina, R. M., Rogol, A. D., Cumming, S. P., Coelho e Silva, M. J., & Figueiredo, A. J. (2015). Biological maturation of youth athletes: assessment and implications. British journal of sports medicine, 49(13), 852–859. https://doi.org/10.1136/bjsports-2015-094623 18. Post, A. K., Koning, R. H., Visscher, C., & Elferink-Gemser, M. T. (2020). Multigenerational performance development of male and female top-elite swimmers-A global study of the 100 m freestyle event. Scandinavian journal of medicine & science in sports, 30(3), 564–571. https://doi. org/10.1111/sms.13599 19. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ 20. Schorer, J., Rienhoff, R., Fischer, L., & Baker, J. (2017). Long-Term Prognostic Validity of Talent Selections: Comparing National and Regional Coaches, Laypersons and Novices. Frontiers in psychology, 8, 1146. https://doi.org/10.3389/fpsyg.2017.01146 21. Stewart, A. M., & Hopkins, W. G. (2000). Consistency of swimming performance within and between competitions. Medicine and science in sports and exercise, 32(5), 997–1001. https://doi. org/10.1097/00005768-200005000-00018 22. Stoter, I. K., Koning, R. H., Visscher, C., & Elferink-Gemser, M. T. (2019). Creating performance benchmarks for the future elites in speed skating. Journal of sports sciences, 37(15), 1770–1777. https://doi.org/10.1080/02640414.2019.1593306 23. Swimrankings. (2019, November 25). Worldwide data 100m swim performance. www. swimrankings.net 24. Till, K., Cobley, S., Oʼhara, J., Chapman, C., & Cooke, C. (2013). An individualized longitudinal approach to monitoring the dynamics of growth and fitness development in adolescent athletes. Journal of strength and conditioning research, 27(5), 1313–1321. https://doi.org/10.1519/ JSC.0b013e31828a1ea7 25. Till, K., Jones, B. L., Cobley, S., Morley, D., O'Hara, J., Chapman, C., Cooke, C., & Beggs, C. B. (2016). Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis. PloS one, 11(5), e0155047. https://doi.org/10.1371/journal.pone.0155047 26. Tiozzo, E., Leko, G., & Ružić, L. (2009). Swimming bodysuit in all-out and constant-pace trials. Biology of Sport, 26, 149-156. 27. Tomikawa, M., & Nomura, T. (2009). Relationships between swim performance, maximal oxygen uptake and peak power output when wearing a wetsuit. Journal of science and medicine in sport, 12(2), 317–322. https://doi.org/10.1016/j.jsams.2007.10.009 28. Toussaint, H. M., Truijens, M., Elzinga, M. J., van de Ven, A., de Best, H., Snabel, B., & de Groot, G. (2002). Effect of a Fast-skin 'body' suit on drag during front crawl swimming. Sports biomechanics, 1(1), 1–10. https://doi.org/10.1080/14763140208522783 29. Vaeyens, R., Güllich, A., Warr, C. R., & Philippaerts, R. (2009). Talent identification and promotion programmes of Olympic athletes. Journal of sports sciences, 27(13), 1367–1380. https://doi. org/10.1080/02640410903110974 30. Vaeyens, R., Lenoir, M., Williams, A. M., & Philippaerts, R. M. (2008). Talent identification and development programmes in sport : current models and future directions. Sports medicine (Auckland, N.Z.), 38(9), 703–714. https://doi.org/10.2165/00007256-200838090-00001 31. Yustres, I., Del Cerro, J. S., González-Mohíno, F., Peyrebrune, M., & González-Ravé, J. M. (2020). Analysis of World Championship Swimmers Using a Performance Progression Model. Frontiers in psychology, 10, 3078. https://doi.org/10.3389/fpsyg.2019.03078

RkJQdWJsaXNoZXIy MTk4NDMw