15502-m-pleumeekers
274. Hendriks, J., et al., Primary chondrocytes enhance cartilage tissue formation upon co-culture with a range of cell types. Soft Matter, 2010. 6 (20): p. 5080-5088. 275. Tsuchiya, K., et al., The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. Materials Science and Engineering: C, 2004. 24 (3): p. 391–396. 276. Rettinger, G., Risks and complications in rhinoplasty. GMS Curr Top Otorhinolaryngol Head Neck Surg, 2007. 6 : p. Doc08. 277. van Buul, G.M., et al., Mesenchymal stem cells reduce pain but not degenerative changes in a mono- iodoacetate rat model of osteoarthritis. J Orthop Res, 2014. 32 (9): p. 1167-74. 278. Saris, D.B.F., IMPACT: Safety and Feasibility of a Single-stage Procedure for Focal Cartilage Lesions of the Knee. http://clinicaltrials.gov, Ungoing. NCT02037204 . 279. Lieberman, J.R., S.C. Ghivizzani, and C.H. Evans, Gene transfer approaches to the healing of bone and cartilage. Mol Ther, 2002. 6 (2): p. 141-7. 280. Polacek, M., et al., The secretory profiles of cultured human articular chondrocytes and mesenchymal stem cells: implications for autologous cell transplantation strategies. Cell Transplant, 2011. 20 (9): p. 1381-93. 281. Nimeskern, L., Pleumeekers, M. M., Martinez, H., Sundberg, J., Gatenholm, P., van Osch, G. J. V. M., Muller, R., Stok, K. S., Mechanical and biochemical map of ear cartilage for tunable biomaterials in tissue engineering. Journal of Biomechanics, 2012. 45 (1): p. S651. 282. Pigott, J.H., et al., Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Immunol Immunopathol, 2013. 156 (1-2): p. 99-106. 283. Bekkers, J.E., et al., One-stage focal cartilage defect treatment with bone marrow mononuclear cells and chondrocytes leads to better macroscopic cartilage regeneration compared to microfracture in goats. Osteoarthritis Cartilage, 2013. 21 (7): p. 950-6. 284. Prendergast, P.J., R. Huiskes, and K. Soballe, ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech, 1997. 30 (6): p. 539-48. 285. Walser, J., M.D. Caversaccio, and S.J. Ferguson, Electrospinning Auricular Shaped Scaffolds for Tissue Engineering. Biomed Tech (Berl), 2013. 286. Romo, T., 3rd, P.M. Presti, and H.R. Yalamanchili, Medpor alternative for microtia repair. Facial Plast Surg Clin North Am, 2006. 14 (2): p. 129-36, vi. 287. Sivayoham, E. and T.J. Woolford, Current opinion on auricular reconstruction. Curr Opin Otolaryngol Head Neck Surg, 2012. 20 (4): p. 287-90. 288. Cenzi, R., et al., Clinical outcome of 285 Medpor grafts used for craniofacial reconstruction. J Craniofac Surg, 2005. 16 (4): p. 526-30. 289. Nayyer, L., et al., Tissue engineering: revolution and challenge in auricular cartilage reconstruction. Plastic and reconstructive surgery, 2012. 129 (5): p. 1123-37. 290. Kang, H., et al., In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regen Med, 2014. 8 (6): p. 442-53. 291. Yang, Q., et al., A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials, 2008. 29 (15): p. 2378-87. 292. Farndale, R.W., D.J. Buttle, and A.J. Barrett, Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochimica et biophysica acta, 1986. 883 (2): p. 173-7. 293. Badylak, S.F., et al., Engineered whole organs and complex tissues. Lancet, 2012. 379 (9819): p. 943-52. 294. Gong, Y.Y., et al., A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials, 2011. 32 (9): p. 2265-73. 295. Crapo, P.M., T.W. Gilbert, and S.F. Badylak, An overview of tissue and whole organ decellularization processes. Biomaterials, 2011. 32 (12): p. 3233-43. 296. Conconi, M.T., et al., Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int, 2005. 18 (6): p. 727-34. 297. Partington, L., et al., Biochemical changes caused by decellularization may compromise mechanical integrity of tracheal scaffolds. Acta Biomater, 2013. 9 (2): p. 5251-61. 298. Remlinger, N.T., et al., Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials, 2010. 31 (13): p. 3520-6. 299. Zang, M., et al., Decellularized tracheal matrix scaffold for tissue engineering. Plastic and reconstructive surgery, 2012. 130 (3): p. 532-40. 214 REFERENCES
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk4NDMw