15502-m-pleumeekers

375. Vats, A., et al., Chondrogenic differentiation of human embryonic stem cells: the effect of the micro- environment. Tissue Eng, 2006. 12 (6): p. 1687-97. 376. Hwang, N.S., S. Varghese, and J. Elisseeff, Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One, 2008. 3 (6): p. e2498. 377. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448 (7151): p. 313-7. 378. Shih, C.C., et al., Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev, 2007. 16 (6): p. 893-902. 379. Caplan, A.I. and J.E. Dennis, Mesenchymal stem cells as trophic mediators. J Cell Biochem, 2006. 98 (5): p. 1076-84. 380. Strioga, M., Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev, 2012. 0 (0): p. 1-29. 381. Vonk, L.A., et al., Autologous, allogeneic, induced pluripotent stem cell or a combination stem cell therapy? Where are we headed in cartilage repair and why: a concise review. Stem Cell Res Ther, 2015. 6 : p. 94. 382. Brown, B.N. and S.F. Badylak, Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res, 2014. 163 (4): p. 268-85. 383. Mansfield, J., et al., The elastin network: its relationship with collagen and cells in articular cartilage as visualized by multiphoton microscopy. J Anat, 2009. 215 (6): p. 682-91. 384. Loeser, R.F., Chondrocyte integrin expression and function. Biorheology, 2000. 37 (1-2): p. 109-16. 385. Mao, Y. and J.E. Schwarzbauer, Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol, 2005. 24 (6): p. 389-99. 386. Shotton, D.M. and H.C. Watson, Three-dimensional structure of tosyl-elastase. Nature, 1970. 225 (5235): p. 811-6. 387. Rowley, J.A., G. Madlambayan, and D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999. 20 (1): p. 45-53. 388. Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Prog Polym Sci, 2012. 37 (1): p. 106-126. 389. Petersen, N. and P. Gatenholm, Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol, 2011. 91 (5): p. 1277-86. 390. Karim, Z., Nanocellulose as novel supportive functional material for growth and development of cells. Cell Developmental Biology, 2015. 4 (2). 391. Williams, D.F., The Williams dictionary of biomaterials. 1999, Liverpool University Press. 392. Paredes Juarez, G.A., et al., Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng Biotechnol, 2014. 2 : p. 26. 393. Martinez Avila, H., et al., Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol, 2014. 98 (17): p. 7423- 35. 394. Lin, N., Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 2014. 59 : p. 302-325. 395. Pertile, R.A., et al., Bacterial cellulose: long-term biocompatibility studies. J Biomater Sci Polym Ed, 2012. 23 (10): p. 1339-54. 396. Orive, G., et al., Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules, 2005. 6 (2): p. 927-31. 397. Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32 (8): p. 773-85. 398. Di Bella, C., et al., 3D Bioprinting of Cartilage for Orthopedic Surgeons: Reading between the Lines. Front Surg, 2015. 2 : p. 39. 399. Gu, B.K., et al., 3-dimensional bioprinting for tissue engineering applications. Biomater Res, 2016. 20 : p. 12. 400. Axpe, E. and M.L. Oyen, Applications of Alginate-Based Bioinks in 3D Bioprinting. Int J Mol Sci, 2016. 17 (12). 401. Daly, A.C., et al., A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication, 2016. 8 (4): p. 045002. 402. Markstedt, K., et al., 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules, 2015. 16 (5): p. 1489-96. 218 REFERENCES

RkJQdWJsaXNoZXIy MTk4NDMw