Pranav Bhagirath

137 Integrated whole-heart computational workflow for inverse potential mapping and personalized simulations Study population Three healthy volunteers participated in this investigation. The study complied with the declaration of Helsinki and received approval from the local ethical committee (METC Zuidwest Holland study number NL38156.098.11) and the institutional scientific board. Written informed consent was obtained from the volunteers. Body surface potential acquisition An MRI scout scan was performed to approximate the position of the heart with respect to the thorax. Subsequently, 62 (+3 limb) electrodes were applied to the subject’s torso, centralized over the heart. Body surface potentials (BSP) were acquired using a 65 channel ActiveTwo system (BioSemi B.V., Amsterdam, The Netherlands). Once the acquisition was completed, the electrode locations were marked with MRI markers enabling accurate identification of the electrode positions. Image acquisition MRI studies were obtained on a 1.5 Tesla Aera scanner (Siemens Healthcare, Erlangen, Germany). Blackblood imaging was performed using a Half-Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) pulse-sequence to acquire three perpendicular stacks (axial, coronal and sagittal). The scan provides coverage from the neck till lower abdomen. Images were acquired during free breathing using navigator gating (diaphragm) with 1 mm window. ECG gating was used to acquire views during the diastolic phase of the cardiac cycle. Typical imaging parameters were: a spatial resolution of 1.2 × 1.2 × 6 mm, TR/TE 744/42 ms and flip angle= 160°. Whole-heart computational model Anatomical and electrical components A topologically correct description of the whole-heart anatomy was constructed using the different cardiac structures such as atrial and ventricular endocard and epicard, the inter-ventricular septum (IVS) and inter-atrial septum (IAS), and tricuspid and mitral valvular plane (video 1). These different structures were used to generate the cardiac volumes required to represent a whole-heart.

RkJQdWJsaXNoZXIy MTk4NDMw