Pranav Bhagirath
73 Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images 29. Schmidt A et al, 2007. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 115 (15), 2006–2014. 30. Sethian JA et al, 1999. Level set methods and fast marching methods: evolving inter-faces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge university press. 31. Suinesiaputra A et al, 2014. A collaborative resource to build consensus for automated left ventricular segmentation of cardiac mr images. Med. Image Anal. 18 (1), 50–62. 32. Tao Q et al, 2010. Automated segmentation of myocardial scar in late enhancement mri using combined intensity and spatial information. Magn. Reson. Med. 64 (2), 586–594. 33. Teague MR et al, 1980. Image analysis via the general theory of moments *. JOSA 70 (8), 920–930. 34. Tipping ME et al, 2001. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244. 35. Tobon-Gomez C et al, 2013. Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Med. Image Anal. 17 (6), 632–648. 36. Turkbey E et al 2012. Differentiation of myocardial scar from potential pitfalls and artefacts in delayed enhancement mri. Br. J. Radiol. 85 (1019). 37. Wagner A et al, 2003. Contrast-enhanced mri and routine single photon emission computed tomography (spect) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. The Lancet 361 (9355), 374–379. 38. Warfield S et al, 2004. Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23 (7), 903– 921. 39. Wu M et al, 2011. Non-invasive characterization of the area-at-risk using magnetic resonance imaging in chronic ischaemia. Cardiovasc. Res. 89 (1), 166–174.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk4NDMw